Skip to main content
Log in

Electrochemical impedance and conductivity measurements in a heterogeneous Fe powder particle—electrolyte system with or without electrochemical reaction

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The participation of solid Fe powder particles in the transfer of charge through a heterogeneous system consisting of an electrolyte and conducting powder particles was studied by means of electrochemical impedance spectroscopy and conductivity measurements. Different behaviour was encountered in electroinactive Na2SO4 electrolyte without metal electrodeposition on the Fe particles and in NiSO4 electrolyte where Ni electrodeposition occurs on the Fe particle surfaces. From impedance diagrams and the proposed model the formation of aggregates and chains of Fe particles is deduced. The important role of electrochemical reaction proceeding at the particle surface in the charge transfer behaviour in stirred heterogeneous systems was also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Sabacky BJ, Evans JW (1977) Metall Trans 8B:5

    Google Scholar 

  2. Fleischmann M, Oldfield JW (1971) J Electroanal Chem 29:231

    Article  CAS  Google Scholar 

  3. Beenackers AA, van Swaaij WP, Welmers A (1977) Electrochim. Acta 22:1277

    Article  CAS  Google Scholar 

  4. Huh T, Evans JW (1978) J Electrochem Soc 134:308

    Article  Google Scholar 

  5. Huh T, Evans JW (1987) J Electrochem Soc 134:317

    Article  CAS  Google Scholar 

  6. Plimley RE, Wright AR (1984) Chem Eng Sci 39:395

    Article  CAS  Google Scholar 

  7. Gabrielli C, Huet F, Sarah A and Valentin G (1992) J Appl Electrochem 22: 801

    Google Scholar 

  8. Gálová M, OriňákováR, Lux L (1998) J Solid State Electrochem 2:2

    Article  Google Scholar 

  9. Gál M, Gálová M, Turoňová A (2000) Collect Czech Chem Commun 65:1515

    Article  Google Scholar 

  10. Lux L, Gálová M, Oriňáková R, Turoňová A (1998) Particul Sci Technol 16:135

    CAS  Google Scholar 

  11. Oriňáková R (2003) Surf Coat Technol 162:54

    Article  Google Scholar 

  12. Gál MF (2004) PhD thesis, Slovak University of Technology, Bratislava

  13. Roušar I, Micka K, Kimla A (1986) Electrochemical engineering 2. Academia Praha, p 93

  14. Pospíšil L, Fiedler J, Fanelli N (2000) Rev Sci Instrum 71:1804

    Article  Google Scholar 

  15. Bockris JO’M, Kim J (1997) J Appl Electrochem 27:890

    Article  CAS  Google Scholar 

  16. Gabrielli C, Huet F, Sarah A, Valentin G (1994) J Appl Electrochem 24:481

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Grant Agency of the Slovak Republic for financial support of projects 1/ 9038/02 and 1/9425/02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Híveš.

Appendix

Appendix

1.1 Derivation of the total impedance Z T of the system according to Figs. 9 and 10

The total impedance of the system is the sum of the electrolyte impedance Z el , contact impedance Z con , interfacial impedance Z as depicted in Fig. 8. Also the outer impedance Z out of the system should be included in the expression for Z T .

$$ Z_{T} =Z_{out} +Z_{el} +Z_{con} +Z $$
(A.1)

For the partial impedances Z out , Z el , Z con , Z according Figs. 9 and 10 it can be written

$$ Z_{el} =R_{el} $$
(A.2)
$$ Z_{out} =i\omega L_{out} $$
(A.3)
$$\frac{1}{Z_{con} }={i}\omega C_{con} +\frac{1}{R_{con} }\quad \Rightarrow \quad Z_{con} =\frac{R_{con} }{(\omega {C}_{ con} R_{con} )^2+1}-{i}\frac{\omega C_{con} R_{con}^2 }{(\omega C_{con} R_{con} )^2+1} $$
(A.4)
$$ \frac{1}{Z}=\frac{1}{Z_{dl} }+\frac{1}{Z_{ct} +Z_{dif} }\quad \Rightarrow \quad Z=\frac{Z_{dl} (Z_{ct} +Z_{dif} )}{Z_{dl} +Z_{ ct} +Z_{dif} } $$
(A.5)

where

$$ Z_{dl} =-\frac{i}{\omega C_{dl} } $$
(A.6)
$$ Z_{ct} =R_{ct} $$
(A.7)
$$ Z_{dif} =O=\frac{1}{Y_0 \sqrt {{i}\omega } }\tanh \left( {B\sqrt {{i}\omega } } \right) $$
(A.8)

Z dl is double-layer impedance, Z ct charge transfer impedance and Z dif diffusion impedance.

Applying the Moivre theorem \({(a+bi)^{1/n}=r^{1/n}\left( {\cos \frac{2l \pi +\varphi }{n}+{i}\sin \frac{2l\pi +\varphi }{n}} \right)}\)

where \({l=0,1,2\ldots (n−1);\quad r=({a}^2+{b}^2)^{1/2};\quad \tan \varphi =\frac{b}{a}}\) and if

$$ \tanh \left( {x\pm iy} \right)=\frac{\sinh (2x)\pm \sin (2y)}{\cosh(2x)+\cos (2y)} $$

\({\sqrt {i} }\) can be rewritten as \({\frac{1+i}{\sqrt {2} }}\) and then

$$ \frac{1}{Y_0 \sqrt {i\omega } }=\frac{\sqrt {2} }{Y_0 \sqrt {\omega } (1−i)}=\sqrt {\frac{2}{\omega }} \frac{1}{2Y_0 }+{i}\sqrt {\frac{2}{\omega }} \frac{1}{2Y_0 } $$
(A.9)
$$\tanh \left( {i^{1/2}B\sqrt {\omega } } \right)=\tanh \left( {(1+i)B\sqrt {\frac{\omega }{2}} } \right)=\frac{\sinh \left( {2B\sqrt {\frac{\omega }{2}} } \right)+ i\sin \left( {2B\sqrt {\frac{\omega }{2}} } \right)}{\cosh \left( {2B\sqrt {\frac{\omega }{2}} } \right)+\cos \left( {2B\sqrt {\frac{\omega }{2}} } \right)} $$
(A.10)

After combining Eqs. A.8–A.10 we obtain an expression for Z dif

$$ Z_{dif} =\frac{\sqrt 2 \left[ {\sinh (2\alpha )-\sin (2\alpha )} \right]}{2Y_0 \sqrt \omega \left[ {\cosh (2\alpha )+\cos (2\alpha )} \right]}+{i}\frac{\sqrt 2 \left[ {\sinh (2\alpha )-\sin (2\alpha )} \right]}{2Y_0 \sqrt \omega \left[ {\cosh (2\alpha )+\cos (2\alpha )} \right]} $$
(A.11)

where \({\alpha =B\sqrt {\frac{\omega }{2}} }\) .

Then the expression for the total impedance Z T can be derived as

$$ \begin{aligned} Z_{T}& =i\omega L_{out} +R_{el} +\frac{R_{con} }{{i}\omega C_{con} R_{con}+1} \\ & +\frac{{i}\left( {R_{ct} +Y_0 \sqrt {{i}\omega } +\tanh \left( {B\sqrt {{i}\omega } } \right)} \right)}{iY_0 \sqrt {{i}\omega } -R_{ct} C_{dl} Y_0 \omega \sqrt {{i}\omega } -\omega C_{dl}\tanh \left( {B\sqrt {{i}\omega } } \right)} \end{aligned} $$
(A.12)
$$ \begin{aligned} {Z}'_{T}&=R_{el} +\frac{R_{con} }{1+(\omega C_{con} R_{con} )^2}+ \\ &\frac{\frac{\sqrt {2} }{2}\frac{\left( {1+R_{ct} \sqrt {\omega } } \right)\left( {\sinh 2\alpha +\sin 2\alpha } \right)}{R_{ct} C_{dl} Y_0 \omega \left( {\cosh 2\alpha +\cos 2\alpha } \right)}}{\left[ {R_{ct} +\frac{\sqrt {2} }{2}\frac{\sinh 2\alpha -\sin 2\alpha }{Y_0 \sqrt {\omega } \left( {\cosh 2\alpha +\cos 2\alpha } \right)}} \right]^2+\left[ {\frac{\sqrt {2} }{2}\frac{\sinh 2\alpha +\sin 2\alpha }{Y_0 \sqrt {\omega } \left( {\cosh 2\alpha +\cos 2\alpha } \right)}-\frac{1}{\omega R_{ct} }} \right]^2} \end{aligned} $$
(A.13)
$$ \begin{aligned} Z''_{T} &=\omega L_{out} -\frac{\omega C_{con} R_{con}^2 }{1+\left( {\omega C_{con} R_{con} } \right)^2}- \\ &\frac{\frac{\sqrt {2} }{2}\frac{Y_0 \left( {\sinh 2\alpha +\sin 2\alpha } \right)\left( {2Y_0 R_{ct}^2 \omega -1} \right)+2R_{ct} \sqrt {\omega } \left( {\sinh ^2 2\alpha +\sin ^2 2\alpha } \right)}{C_{dl} Y_0^2 \omega ^{5/2}R_{ct} \left( {\cosh 2\alpha +\cos 2\alpha } \right)}}{\left[ {R_{ct} +\frac{\sqrt {2} }{2}\frac{\sinh 2\alpha -\sin 2\alpha }{Y_0 \sqrt {\omega } \left( {\cosh 2\alpha +\cos 2\alpha } \right)}} \right]^2+\left[ {\frac{\sqrt {2} }{2}\frac{\sinh 2\alpha +\sin 2\alpha }{Y_0 \sqrt {\omega } \left( {\cosh 2\alpha +\cos 2\alpha } \right)}-\frac{1}{\omega R_{ct} }} \right]^2} \end{aligned} $$
(A.14)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gál, M.F., Híveš, J., Benová, M. et al. Electrochemical impedance and conductivity measurements in a heterogeneous Fe powder particle—electrolyte system with or without electrochemical reaction. J Appl Electrochem 37, 737–746 (2007). https://doi.org/10.1007/s10800-007-9306-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-007-9306-4

Keywords

Navigation