Skip to main content
Log in

Electrochemical removal of cadmium from dilute aqueous solutions using a rotating cylinder electrode of wedge wire screens

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Rates of mass transfer at rotating cylinder electrodes of wedge wire screens were studied by measuring the limiting current for the cathodic reduction of ferricyanide as test reaction. The experimental data are well correlated by an empirical expression between the Sherwood number and the Reynolds number, both in terms of the internal slot opening as characteristic length, and including two additional dimensionless parameters in order to characterize the geometry of the screens. The performance of an undivided electrochemical batch reactor with a rotating cylinder cathode of wedge wire screens was tested analyzing the cadmium removal from dilute solutions. The effect of cathodic applied potential and size of the screen is studied. Taking into account the residual cadmium concentration the best results were obtained for a cathode potential of −1.1 V vs. SCE at 700 rpm, where the cadmium concentration decreased from 54 to 0.9 mg l−1 after 30 min of electrolysis with a specific energy consumption of 10.7 kWh kg−1 and a normalized space velocity of 3.54 h−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Abbreviations

a :

constant in Equation 1

a e :

reactor specific surface area (m−1)

A :

short mesh aperture in expanded metals (m)

A s :

electrode specific surface area (m−1)

C :

concentration (mol m−3 or mg l−1)

d :

external cylinder diameter (m)

d h :

hydraulic diameter = 4ɛ/A s (m)

D :

diffusion coefficient (m2 s−1)

E s :

specific energy consumption (W s mol−1 or kWh kg−1)

E SCE :

cathode potential referred to saturated calomel electrode (V)

F :

Faraday constant (C mol−1)

H :

distance between wires in woven-wire meshes (m)

I :

current (A)

I lim :

limiting current (A)

k m :

mass-transfer coefficient (m s−1)

r 1 :

internal radius (m)

r 2 :

external radius (m)

\({\overline r}\) :

mean radius =\({\sqrt{(r_1^2+r_2^2)/2}}\) (m)

R :

external slot opening (m)

s n :

normalized space velocity (s−1 or h−1)

S :

internal slot opening (m)

Re d :

Reynolds number in terms of d as characteristic length = ω r 2 d

Re S :

Reynolds number in terms of S as characteristic length = ω r 2 S

Sc :

Schmidt number = ν/D

Sh d :

Sherwood number in terms of d as characteristic length = k m d/D

Sh S :

Sherwood number in terms of S as characteristic length = k m S/D

t :

time (min or s)

U :

tangential velocity (m s−1)

U c :

cell voltage (V)

V :

effective electrolyte volume within the reactor (m3)

V e :

electrode volume (m3)

WWS05:

acronym of Wedge Wire Screen with a 0.5 mm internal slot opening

x :

fractional conversion

α:

exponent of the Reynolds number in Equation 1

β:

current efficiency (%)

γ:

exponent of a dimensionless parameter in Equation 1

ɛ:

porosity

κ:

exponent of a dimensionless parameter in Equation 1

ν:

kinematic viscosity (m2 s−1)

νe :

charge number of the electrode reaction

ρmean :

space time yield (kg m−3 s−1)

ω:

rotation speed (rpm or s−1)

References

  1. Dutra A.J.B., Espínola A., Borges P.P. (2000) Minerals Eng. 13:1139

    Article  CAS  Google Scholar 

  2. Tramontina J., Azambuja D.S., Piatnicki C.M.S. (2002) J. Braz. Chem. Soc. 13:469

    Article  CAS  Google Scholar 

  3. Elsherief E. (2003) Electrochim. Acta 48:2667

    Article  CAS  Google Scholar 

  4. Reade G.W., Bond P., Ponce de Leon C., Walsh F.C. (2004) J. Chem. Technol. Biotechnol. 79:946

    Article  CAS  Google Scholar 

  5. Grau J.M., Bisang J.M. (2001) J. Chem. Technol. Biotechnol. 76:161

    Article  CAS  Google Scholar 

  6. Grau J.M., Bisang J.M. (2002) J. Chem. Technol. Biotechnol. 77:465

    Article  CAS  Google Scholar 

  7. Grau J.M., Bisang J.M. (2003) J. Chem. Technol. Biotechnol. 78:1032

    Article  CAS  Google Scholar 

  8. Ramachandran P.S. (2003) Chem. Eng. World 38:127

    Google Scholar 

  9. L.J. Durney, in ‘Ullmann’s Encyclopedia of Industrial Chemistry’, (VCH Verlagsgesellschaft, Weinheim, 1987), p. 142

  10. H. Brown and B.B. Knapp, in F.A. Lowenheim (ed.), ‘Modern Electroplating’, 3rd edn., Ch. 12, (John Wiley & Sons, New York, 1974), p. 292

  11. E.B. Saubestre, in F.A. Lowenheim (ed.), ‘Modern Electroplating’, 3rd edn., Ch. 32, (John Wiley & Sons, New York, 1974), p. 762

  12. Kreysa G. (1983) . DECHEMA Monog. 94:123 (in German)

    CAS  Google Scholar 

  13. Walsh F.C. (1993) A First Course in Electrochemical Engineering, Ch. 5. Alresford Press, Alresford, p.149

    Google Scholar 

  14. Grau J.M., Bisang J.M. (2005) J. Appl. Electrochem. 35:285

    Article  CAS  Google Scholar 

  15. Eisenberg M., Tobias C.W., Wilke C.R. (1954) J. Electrochem. Soc. 101:306

    Article  CAS  Google Scholar 

  16. Kreysa G. (1983) Chem.-Ing.-Tech. 55:23 (in German)

    Article  CAS  Google Scholar 

  17. Grau J.M., Bisang J.M. (2006) J. Appl. Electrochem. 36:759

    Article  CAS  Google Scholar 

  18. JohnLow C.T. , Ponce de Leon C., Walsh F.C. (2005) Aust. J. Chem. 58:246

    Article  Google Scholar 

  19. Nahlé A.H., Reade G.W., Walsh F.C. (1995) J. Appl. Electrochem. 25:450

    Article  Google Scholar 

  20. J. Fries and H. Getrost, Organic Reagents for Trace Analysis (E. Merck, Darmstadt, 1977), p. 78

  21. Robinson D., Walsh F.C. (1991) Hydrometallurgy 26:115

    Article  CAS  Google Scholar 

  22. Bazan J.C., Bisang J.M. (2004) J. Appl. Electrochem. 34:501

    Article  CAS  Google Scholar 

  23. D.R. Gabe and F.C. Walsh, Proc. Reinhardt-Schuhmann, Symp. Ser. Met. Soc. (AIME) (1987) 775

Download references

Acknowledgements

This work was supported by the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional del Litoral (UNL) of Argentina. The authors are grateful to Model Chemical Laboratory (Facultad de Ingeniería Química-UNL) for the facilities to perform the spectrophotometric analysis and to INTECO S.R.L. for provision of the wedge wire screens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.M. Bisang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grau, J., Bisang, J. Electrochemical removal of cadmium from dilute aqueous solutions using a rotating cylinder electrode of wedge wire screens. J Appl Electrochem 37, 275–282 (2007). https://doi.org/10.1007/s10800-006-9254-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-006-9254-4

Key words

Navigation