Skip to main content
Log in

Cr(VI) transport through ceramic ion-exchange membranes for treatment of industrial wastewaters

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This work is devoted to assessment of the possibility of using ceramic membranes, which contain an ion-exchange component, such as hydrated zirconium dioxide (HZD), for Cr(VI) removal from dilute solutions by electrodialysis. Transport properties of the membranes were investigated. HZD-containing membranes were found to be permeable to anions in acidic media while they demonstrate cation-exchange properties in alkaline media. Cr(VI) anion transport through HZD membranes was studied. It was shown that an increase in the amount of ion-exchanger in the membrane results in a rise in electrodialysis efficiency. The transport number of Cr(VI) species was found to range from 0.33 to 0.63 for currents below the limiting current. It was also shown that increasing the concentration of H+ or Cr(VI) ions in the solution to be purified allows higher rate of Cr(VI) ion transport through the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Abbreviations

a :

activity (mol m−3)

A :

area (m2)

C Cr,s :

concentration of Cr(VI) in the bulk of solution (mol m−3)

C 0Cr,s :

concentration of Cr(VI) in the solution at themembrane surface (mol m−3)

D Cr,s :

Cr(VI) diffusion coefficient in the solution (m2 s−1)

d :

distance between the membrane and cathode (m)

E :

cell voltage (V)

E m :

membrane potential (V)

F :

Faraday constant (96485 A s mol−1)

i :

membrane current density calculated with allowance for the outersurface area (A m−2)

i Cr,lim :

limiting membrane current density caused by transport of Cr(VI) ions (A m−2)

k Cr :

mass transport coefficient of Cr(VI) ions (m s−1)

L :

membrane length (m)

N Cr,m :

flux of Cr(VI) ions through the membrane (mol m−2 s−1)

N Na,m :

flux of Na+ ions through the membrane (mol m−2 s−1)

n Cr,a :

amount of Cr(VI) ions in the anolyte (mol)

n Na,c :

amount of Na+ ions in the catholyte (mol)

R :

gas constant (8.314 J mol−1 K−1)

T :

temperature (K)

t Cr,m :

transport number of Cr(VI) ions through the membrane (dimensionless)

t Cr,s :

transport number of Cr(VI) ions through the solution (dimensionless)

u :

superficial flow rate (for the cathode compartment) (m s−1)

z :

charge of species (dimensionless)

γ:

ratio of anion over cation valences (dimensionless)

κ:

specific conductivity (Ohm−1 m−1)

τ:

time (s, h)

ν:

kinematic viscosity (m2 s−1)

Re :

Reynolds number

Sc :

Schmidt number

Sh :

Sherwood number

References

  1. Vallejo M.E., Persin F., Innocent C., Sistat Ph., Pourcelly G. (2000). Sep. and Pur. Techn. 21:61

    Article  CAS  Google Scholar 

  2. Velizarova E., Ribeiro A.B., Ottosen L.M. (2002). J. Hazardous Materials 94:147

    Article  CAS  Google Scholar 

  3. Roualdes S., Kourda N., Durand J., Pourcelly G. (2002). Desalination 146:273

    Article  CAS  Google Scholar 

  4. C.A.M. Siskens, in A.J. Burggraaf and L. Cot (Eds) Fundamentals of Inorganic Membrane Science and Technology, (Elsevier, Amsterdam, 1996) pp. 619

  5. Ahmed M.I., Chang H.T., Selman J.R., Holsen T.M. (2002). J. Membr. Sci. 197:63

    Article  CAS  Google Scholar 

  6. Huang K.L., Holsen T.M., Selman J.R. (2002). J. Membr. Sci. 210:137

    Article  CAS  Google Scholar 

  7. Pattanayak J., Mondal K., Wiltowski T., Lalvani S.B., Mandich N.V. (2000). Metal Finishing 98:39

    Article  CAS  Google Scholar 

  8. Guddati S.L., Holsen T.M., Li C.C., Selman J.R., Mandich N.V. (1999). J. Applied Electrochem. 29:1129

    Article  CAS  Google Scholar 

  9. Walsh F. (1993). A First Course in Electrochemical Engineering. Alresford Press, London, p 381

    Google Scholar 

  10. Linkov V.M., Belyakov V.N. (2001). Sep. and Purif. Technol. 25:57

    Article  CAS  Google Scholar 

  11. Vesely V., Pekarek V. (1972). Talanta 19:219

    Article  CAS  Google Scholar 

  12. Charlot G. (1961). Les Methodes de la Chimie Analytique. Masson, Paris p 1023 (in French)

    Google Scholar 

  13. Hale D.K., McCauley D.J. (1961). Trans. Farad. Soc. 57:135

    Article  CAS  Google Scholar 

  14. Helfferich F. (1995). Ion Exchange. Dover, New York, p 624

    Google Scholar 

  15. Spoor P.B., ter Veen W.R, Janssen L.J.J. (2001). J. Appl. Electrochem. 31:523

    Article  CAS  Google Scholar 

  16. Dzyazko Yu.S., Belyakov V.N. (2004). Desalination 162:179

    Article  CAS  Google Scholar 

  17. Koryta J. (1991). Ions, Electrodes and Membranes. Wiley, Chichester, p. 197

    Google Scholar 

  18. Lever A.B.P. (1984). Inorganic Electronic Spectroscopy. Elsevier, Amsterdam

    Google Scholar 

  19. Koene L., Janssen L.J.J. (2001). Electrochim. Acta 47:695

    Article  CAS  Google Scholar 

  20. J. Ciborowski, Podstawy Inzynierii Chemicznej (Naukovo-Techniczne Wydawnictwa, Warsaw, 1965) pp. 525 (in Polish)

  21. Parsons R. (1959). Handbook of Electrochemical Constants. Butterworth Scientific Publications, London p 79

    Google Scholar 

  22. Sengupta A.K. (1995). Chromate Ion Exchange, Ion Exchange Technology: advances in pollution control. Technomic Publishing Co. Inc., Lancaster, p. 385

    Google Scholar 

Download references

Acknowledgements

The work was performed within the framework of the joint French-Ukrainian “Dnipro” program (050806RL) supported by the EGIDE foundation (France) and Ministry of Education and Science of Ukraine (grant N 53 M/2004–23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Dzyazko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dzyazko, Y.S., Mahmoud, A., Lapicque, F. et al. Cr(VI) transport through ceramic ion-exchange membranes for treatment of industrial wastewaters. J Appl Electrochem 37, 209–217 (2007). https://doi.org/10.1007/s10800-006-9243-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-006-9243-7

Keywords

Navigation