Skip to main content

Advertisement

Log in

Development of a continuous reactor for the electro-reduction of carbon dioxide to formate – Part 1: Process variables

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This paper reports an experimental investigation into the effects of five process variables on the performance of a bench-scale continuous electrochemical reactor used in the reduction of CO2 to potassium formate, and interprets the data in terms of reactor engineering for a (speculative) industrial process for electro-reduction of CO2. The process variables: temperature, catholyte species, catholyte conductivity, cathode specific surface area and cathode thickness were studied, along with CO2 pressure and current density, in a set of factorial and parametric experiments aimed to unravel their main effects and interactions. These variables showed complex interdependent effects on the reactor performance, as measured by the current efficiency and specific energy for generation of formate (HCO 2 ). The “best” result has a formate current efficiency of 86% at a superficial current density of 1.3 kA m−2, with a product solution of 0.08 m KHCO2 and specific electrochemical energy of 260 kWh per kmole formate. The combined results indicate good prospects for process optimization that could lead to development of an industrial scale reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C :

catholyte composition

CE:

current efficiency (dimensionless)

E :

cathode potential (VSHE)

E cell :

full-cell operating voltage (absolute value) (V)

E o :

Standard equilibrium electrode potential (VSHE)

GDE:

gas diffusion electrode

i :

geometric (superficial) current density (kA m−2)

i max :

maximum geometric (superficial) current density (kA m−2)

Me:

cathode material

P :

CO2 pressure (Bar(abs) or kPa(abs))

P cathode :

cathode side pressure (kPa (abs))

T :

temperature (K)

t :

operating time (h)

X 1, X 2, X 3 :

factorial variables defined in Tables 6, 9, 10, 13, 14, 16 and 17

y :

volume fraction (i.e. mole fraction) in gas phase (dimensionless)

τ:

thickness of 3D cathode (m)

References

  1. W. M. Ayers, in J. Paul and C.M. Pradier (Eds), Carbon Dioxide Chemistry: Environmental Issues (The Royal Society of Chemistry, 1994), 365 pp.

  2. Williams R., Crandall R.S., Bloom A. (1978) Appl. Phys. Lett. 33(5):381

    Article  CAS  Google Scholar 

  3. Rice C., Ha S., Masel R.I. (2002) J. Power Sources 111:83

    Article  CAS  Google Scholar 

  4. Kirk-Othmer Encyclopedia of Chemical Technology (John Wiley & Sons, Inc., 2005)

  5. Udupa K.S., Subramanian G.S., Udupa H.V.K. (1971) Electrochim. Acta. 16:1593

    Article  CAS  Google Scholar 

  6. Ryu J., Andersen T.N., Eyring H. (1972) J. Phys. Chem. 76:3278

    Article  CAS  Google Scholar 

  7. Ito K., Murata T., Ikeda S. (1975) Bull. Nagoya Inst. Techn. 27:209

    CAS  Google Scholar 

  8. Russell P., Kovac N., Srinivasan S., Steinberg M. (1977) J. Electrochem. Soc. 124(9):1329

    Article  CAS  Google Scholar 

  9. Hori Y., Suzuki S. (1982) Bull. Chem. Soc. Jpn. 55(3):660

    Article  CAS  Google Scholar 

  10. Kapusta S., Hackerman N. (1983) J. Electrochem. Soc. 130:607

    Article  CAS  Google Scholar 

  11. Mahmood M.N., Masheder D., Harty C.J. (1987) J. Appl. Electrochem. 17:1159

    Article  CAS  Google Scholar 

  12. Todoroki M., Hara K., Kudo A., Sakata T. (1995) J.Electroanal. Chem. 394:199

    Article  Google Scholar 

  13. Mizuno T., Ohta K., Sasaki A. (1995) Energy Sources, 17:503

    Article  CAS  Google Scholar 

  14. Koleli F., Balun D. (2004) Appl. Catal. A General 274:237

    Article  CAS  Google Scholar 

  15. Akahori Y., Iwanaga N., Kato Y., Hamamoto O., Ishii M. (2004) Electrochemistry (Tokyo, Japan), 72(4): 266

    CAS  Google Scholar 

  16. Li H., Oloman C. (2005) J. Appl. Electrochem. 35:955

    Article  CAS  Google Scholar 

  17. F. Walsh, A First Course in Electrochemical Engineering (The Electrochemical Consultancy Romsey, 1993)

  18. Sanchez-Sanchez X.M., Montiel V., Tryk D.A., Aldaz A., Fujishima A. (2001) Pure Appl. Chem. 73(12):1917

    Article  CAS  Google Scholar 

  19. Murata A., Hori Y. (1991) Bull. Chem. Soc. Jpn., 64:123

    Article  CAS  Google Scholar 

  20. Hori Y., Murata A., Takahashi R., Suzuki S. (1988) J. Chem. Soc. Chem. Commun. 1:17

    Article  Google Scholar 

  21. Hara K., Kudo A., Sakata T. (1995) J. Electrochem. Soc. 142(4):L57

    Article  CAS  Google Scholar 

  22. Vassiliev Y., Bagotzky V., Osetrova N., Khazova O., Mayorova N. (1985) J.Electroanal. Chem. 189:271

    Article  Google Scholar 

  23. Oloman C. (1979) J. Electrochem. Soc. 126:1885

    Article  CAS  Google Scholar 

  24. N. Gupta, M. Gattrell, B. MacDougall, J. App. Electrochem. (2005) (Online issue)

  25. Cotton F., Wilkinson G. (1972) Advanced Inorganic Chemistry. Interscience, New York

    Google Scholar 

  26. Wong C.S., Tishchenko P.Y., Johnson W.K. (2005) J. Chem. Eng. Data 50:817

    Article  CAS  Google Scholar 

  27. Harned H., Davies R. (1943) J. Am. Chem. Soc. 65:2030

    Article  CAS  Google Scholar 

  28. Lide D.R. (2004) C.R.C. Handbook of Chemistry and Physics. CRC Press, New York

    Google Scholar 

  29. W. F. Linke (ed.), Solubilities: Inorganic and Metal-Organic Compounds (D.Van Nostrand Princeton, 1958)

Download references

Acknowledgements

This work was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) and supported by the University of British Columbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin Oloman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Oloman, C. Development of a continuous reactor for the electro-reduction of carbon dioxide to formate – Part 1: Process variables. J Appl Electrochem 36, 1105–1115 (2006). https://doi.org/10.1007/s10800-006-9194-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-006-9194-z

Keywords

Navigation