Journal of Applied Electrochemistry

, Volume 36, Issue 11, pp 1297–1306 | Cite as

Towards a determination of the active surface area of polycrystalline and nanoparticle electrodes by Cu upd and CO oxidation

  • T. Nagel
  • N. Bogolowski
  • H. BaltruschatEmail author


Methods for the determination of the surface area for Pt, Ru and Se modified Pt and Ru are compared, in view of their possible application for technical and nanoparticle electrodes. The hydrogen adsorption charge can hardly be used as a reliable measure for the surface area for Ru because it is paralleled by anion adsorption. The charge necessary for the oxidation of adsorbed CO also contains a large contribution due to anion or oxygen adsorption, which amounts to approx. 45% of the charge in the case of Ru. The mass spectrometrically determined amount of CO2 formed gives a more reliable measure for the surface area, provided that the maximum coverages are constant and independent of the particular surface. Values obtained in this way agree to within 20% with surface area values obtained from measuring the charge needed for the desorption of a complete monolayer of Cu upd on Pt(111) and polycrystalline Pt, polycrystalline Ru, submonolayers of Ru on polycrystalline Pt and on Pt(111) and for nanoparticle, carbon supported electrodes. Se modified Ru has recently found attention as a methanol tolerant cathode material for oxygen reduction. CO does not adsorb on Pt or Ru saturated by Se. For surfaces partially covered by Se, a comparison of the charge measured by cyclic voltammetry in the hydrogen region and of the mass spectrometrically determined amount of CO2 suggests that the latter can be used for a determination of the area not covered by Se. Cu upd, on the other hand, also takes place on surfaces completely covered by Se; the Cu desorption charge is independent of the Se coverage on Pt and Ru modified Pt as long as it does not exceed 70% of full coverage. In the presence of multilayers of Se, Cu x Se is formed. On Se modified bulk Ru the amount of Cu upd decreases with increasing Se coverage, approaching only 105 μC m−2 for full Se coverage.


Cu-UPD CO-oxidation DEMS Pt-single crystal electrodes Se-deposition surface area determination Ru-electrode 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Thanks are due to Prof. Dr. Helmut Bönnemann and K. S. Nagabhushana from Forschungszentrum Karlsruhe GmbH for the preparation of the ruthenium colloids. We acknowledge financial support to the BMBF within the framework of the O2rednet project.


  1. 1.
    Tributsch H., Bron M., Hilgendorff M., Schulenburg H., Dorbandt I., Eyert V., Bogdanoff P., Fiechter S. (2001) J. Appl. Electrochem. 31:739CrossRefGoogle Scholar
  2. 2.
    Bron M., Bogdanoff P., Fiechter S., Hilgendorff M., Radnik J., Dorbandt I., Schulenburg H., Tributsch H. (2001) J. Electroanal. Chem. 517:85CrossRefGoogle Scholar
  3. 3.
    Bron M., Bogdanoff P., Fiechter S., Dorbandt I., Hilgendorff M., Schulenburg H., Tributsch H. (2001) J. Electroanal. Chem. 500:510CrossRefGoogle Scholar
  4. 4.
    Neergat M., Leveratto D., Stimming U. (2002) Fuel Cells – From Fundamentals Syst 2:25Google Scholar
  5. 5.
    Jusys Z., Massong H., Baltruschat H. (1999) J. Electrochem. Soc. 146:1093CrossRefGoogle Scholar
  6. 6.
    Wolter O., Heitbaum J. (1984) Ber Bunsenges Phys. Chem. 88:6Google Scholar
  7. 7.
    Willsau J., Heitbaum J. (1986) Electrochim Acta 31:943CrossRefGoogle Scholar
  8. 8.
    Climent V., Gómez R., Feliu M. (1999) Electrochim. Acta 45:629CrossRefGoogle Scholar
  9. 9.
    Herrero E., Rodes A., Pérez J.M., Feliu J.M., Aldaz A. (1996) J. Electroanal. Chem. 412:165CrossRefGoogle Scholar
  10. 10.
    Green C.L., Kucernak A. (2002) J. Phys. Chem. B 106:1036CrossRefGoogle Scholar
  11. 11.
    Wang H., Löffler T., Baltruschat H. (2001) J. Appl. Electrochem. 31:759CrossRefGoogle Scholar
  12. 12.
    Baltruschat H. (2004) J. Am. Soc. Mass Spectrom. 15:1693CrossRefGoogle Scholar
  13. 13.
    Clavilier J., Faure R., Guinet G., Durand R. (1980) J. Electroanal. Chem. 107:205CrossRefGoogle Scholar
  14. 14.
    Schmidt T.J., Gasteiger H.A., Stab G.D., Urban P.M., Kolb D.M., Behm R.J. (1998) J. Electrochem. Soc. 145:2354CrossRefGoogle Scholar
  15. 15.
    Bönnemann H., Nagabhushana K.S. (2004) J. New Mat. Electrochem. Syst. 7:93Google Scholar
  16. 16.
    Zaikovskii V.I., Nagabhushana K.S., Kriventsov V.V., Loponov K.N., Cherepanova S.V., Kvon R.I., Bonnemann H., Kochubey D.I., Savinova E.R. (2006) J. Phys. Chem. B 110:6881CrossRefGoogle Scholar
  17. 17.
    K.-P. Geyzers, Ph.D. Thesis; Universität Bonn, 1997Google Scholar
  18. 18.
    Cramm S., Friedrich K.A., Geyzers K.P., Stimming U., Vogel R. (1997) Fresenius J. Anal. Chem. 358:189CrossRefGoogle Scholar
  19. 19.
    Feliu J.M., Gomez R., Llorca M.J., Aldaz A. (1993) Surf Sci. 289:152CrossRefGoogle Scholar
  20. 20.
    Baltruschat H. (1999) In: Wieckowski A. (ed) Interfacial Electrochemistry. Marcel Dekker Inc, New York Basel, pp. 577Google Scholar
  21. 21.
    Hartung T., Schmiemann U., Kamphausen I., Baltruschat H. (1991) Anal. Chem. 63:44CrossRefGoogle Scholar
  22. 22.
    Schmiemann U., Ph.D. Thesis; Universität Witten-Herdecke (1993)Google Scholar
  23. 23.
    Friedrich K.A., Geyzers K.P., Dickinson A.J., Stimming U. (2002) J. Electroanal. Chem. 524:261CrossRefGoogle Scholar
  24. 24.
    K.A. Friedrich, K.-P. Geyzers, F. Henglein, A. Marmann, U. Stimming, W. Unkauf and R. Vogel (1996) in A. Wieckowski and K. Itaya (eds) ‚Sixth International Symposium on Electrode Processes’, Vol. 96-8 (The Electrochemical Society, Los Angeles), pp. 119–135Google Scholar
  25. 25.
    D. Aberdam, F. Razafimaharo, R. Faure, R. Durand (1996) in A. Wieckowski, K. Itaya (eds), ‚Sixth International Symposium on Electrode Processes’, Vols. 96-8 (The Electrochemical Society, Los Angeles) pp. 280–286Google Scholar
  26. 26.
    Crown A., Moraes I.R., Wieckowski A. (2001) J. Electroanal. Chem. 500:333CrossRefGoogle Scholar
  27. 27.
    Massong H., Wang H.S., Samjeske G., Baltruschat H. (2000) Electrochim. Acta 46:701CrossRefGoogle Scholar
  28. 28.
    Samjeské G., Xiao X.-Y., Baltruschat H. (2002) Langmuir 18:4659CrossRefGoogle Scholar
  29. 29.
    Al-Akl A., Attard G.A. (1997) J. Phys. Chem. B 101:4597CrossRefGoogle Scholar
  30. 30.
    Nishihara C., Nozoye H. (1995) J. Electroanal. Chem. 386:75CrossRefGoogle Scholar
  31. 31.
    Shingaya Y., Matsumoto H., Ogasawara H., Ito M. (1995) Surf. Sci. 335:23CrossRefGoogle Scholar
  32. 32.
    Abe T., Swain G.M., Sashikata K., Itaya K. (1995) J. Electroanal. Chem. 382:73CrossRefGoogle Scholar
  33. 33.
    Herrero E., Buller L.J., Abruña H.D. (2001) Chem. Rev. 101:1897CrossRefGoogle Scholar
  34. 34.
    Steponavicius A., Simkunaite D. (2002) Russ. J. Electrochem. 38:488CrossRefGoogle Scholar
  35. 35.
    Riveros G., Henriquez R., Cordova R., Schrebler R., Dalchiele E.A., Gomez H. (2001) J. Electroanal. Chem. 504:160CrossRefGoogle Scholar
  36. 36.
    Friedrich K.A., Henglein F., Stimming U., Unkauf W. (2000) Electrochim. Acta 45:3283CrossRefGoogle Scholar
  37. 37.
    Maillard F., Eikerling M., Cherstiouk O.V., Schreier S., Savinova E., Stimming U. (2004) Faraday Discuss. 125:357CrossRefGoogle Scholar
  38. 38.
    B. Lanova, H. Wang, H. Baltruschat, Fuel Cells, 3–4 (2006)214Google Scholar
  39. 39.
    Carbonnelle P., Lamberts L. (1992) J. Electroanal. Chem. 340:53CrossRefGoogle Scholar
  40. 40.
    D. Lide, ‚CRC Handbook of Chemistry and Physics’ 80th edn., (CRC Press, Boca Raton, 1999)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Institut für Physikalische ChemieUniversität BonnBonnGermany

Personalised recommendations