Journal of Applied Electrochemistry

, Volume 36, Issue 11, pp 1291–1295 | Cite as

Purification process for an inorganic rechargeable lithium battery and new safety concepts

  • L. Zinck
  • M. Borck
  • C. Ripp
  • G. HambitzerEmail author


We have investigated an inorganic lithium battery system in which LiCoO2 is used as the positive electrode and lithium, intercalated into graphite, serves as negative electrode. The conducting salt is lithium tetrachloroaluminate (LiAlCl4). The electrolyte is based on SO2. It has been shown that a layer of lithium hydroxide is present on the surface of the lithium cobalt oxide. This has a negative impact on the stability of the electrode. To improve stability, we have developed a purification process for removing the lithium hydroxide from the surface of the positive electrode. After purification the cells show no significant change in either capacity or internal resistance when cycled. Up to 70% of the theoretical capacity of electrodes which have been purified in this way can be used without any negative effects being observed. To prevent the deposition of metallic lithium leading to a hazardous situation, a new safety concept was developed whereby local short circuits are allowable. Safe functioning of the new concept has been demonstrated with tests on complete cells.


inorganic lithium battery system lithium hydroxide lithium cobalt dioxide purification process new safety concept 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank “Zentrum für Sonnenenergie und Wasserstoff-Forschung (ZSW), Ulm, Baden-Württemberg, Germany”, who carried out some of the measurements.


  1. 1.
    Abraham K.M. (1993). Electrochim. Acta 38(9):1233CrossRefGoogle Scholar
  2. 2.
    Maleki H., Deng G., Anani A., Howard J. (1999). Yogi. J. Electrochem. Soc. 146(9):3224–3229CrossRefGoogle Scholar
  3. 3.
    Hatchard T.D., MacNeil D.D., Basu A., Dahn J.R. (1999). Yogi. J. Electrochem. Soc. 148(7):A755–A761CrossRefGoogle Scholar
  4. 4.
    M. Wakihara and O. Yamamoto (Ed.), ‘Lithium Ion Batteries’ (Wiley-VCH, 1998)Google Scholar
  5. 5.
    C. Ripp, V. Döge, K. Pinkwart and G. Hambitzer, GDCh-Monographien (1997) 12Google Scholar
  6. 6.
    US-Patent 09/926,768Google Scholar
  7. 7.
    Stassen I., Hambitzer G. (2002). J. Power Sources 105:145CrossRefGoogle Scholar
  8. 8.
    G. Hambitzer, Post-doctoral thesis, Universität Witten-Herdecke, 1995Google Scholar
  9. 9.
    C. Ripp, V. Döge, K. Pinkwart and G. Hambitzer, GDCh-Monographien (1999) 18Google Scholar
  10. 10.
    Kanamura K., Tamura H., Shiraishi S., Takehara Z.-I. (1995). Yogi. J. Electroanal. Chem. 394:49CrossRefGoogle Scholar
  11. 11.
    International Patent Application PCT/DE 2004/002105Google Scholar
  12. 12.
    Wang H., Jang Y-I., Huang B., Sadoway D.R., Chiang Y-M. (1999). Yogi. J. Electrochem. Soc. 146:473CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Fortu PowerCell GmbHKarlsruheGermany

Personalised recommendations