Journal of Applied Electrochemistry

, Volume 36, Issue 11, pp 1241–1252 | Cite as

Copper dissolution in the presence of a binary 2D-compound: CuI on Cu(100)

  • P.  BroekmannEmail author
  • N. T. M.  Hai
  • K.  Wandelt


Exposing a Cu(100) electrode surface to an acidic and iodide containing electrolyte (5 mM H2SO4/1 mM KI) leads to the formation of an electro-compressible/electro-decompressible c(p × 2)-I adsorbate layer at potentials close to the onset of the copper dissolution reaction. An increase of mobile CuI monomers on-top of the iodide modified electrode surface causes the local CuI solubility product to be exceeded thereby giving rise to the nucleation and growth of a laterally well ordered 2D-CuI film at potentials below 3D-CuIbulk phase formation. Step edges serve as sources for the consumption of copper material upon compound formation leading to accelerated copper dissolution at the step edges. The 2D-CuI film exhibits symmetry properties and nearest neighbor spacings that are closely related to the (111) lattice of the crystalline CuIbulk phase. Intriguingly, the 2D-CuI film on Cu(100) does not act as an efficient passive layer. Copper dissolution proceeds at slightly higher potentials even in the presence of this binary 2D-compound via an inverse step flow mechanism. Further dissolution causes the nucleation and growth of 3D-CuI clusters on-top of the 2D-CuI film. This several nanometer thick 3D-CuIbulk phase passivates the electrode against further dissolution. Characteristically, the formation/dissolution of the 3D-CuIbulk phase reveals a significantly larger potential hysteresis of about ΔE = 320 mV while the appearance/disappearance of the 2D-CuI film is reversible with a potential hysteresis of only ΔE = 20 mV.


copper corrosion passivation binary compound formation STM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andriacos P.C., Uzoh C., Ducovic J.O., Horcans J., Deligianni H., (1998) IBM J. Res. Dev. 42: 567CrossRefGoogle Scholar
  2. 2.
    Arnaud L., Tartavel G., Berger T., Mariolle D., Gobil Y., Touet I., (2000) Microelectron. Reliab. 40: 1295CrossRefGoogle Scholar
  3. 3.
    Vogt M.R., Polewska W., Magnussen O.M., Behm R.J., (1997) J. Electrochem. Soc. 144: L113CrossRefGoogle Scholar
  4. 4.
    Polewska W., Vogt M.R., Magnussen O.M., Behm R.J., (1999) J. Phys. Chem. B 103: 10440CrossRefGoogle Scholar
  5. 5.
    Scherer J., Vogt M.R., Magnussen O.M., Behm R.J., (1997) Langmuir 13(26): 7045CrossRefGoogle Scholar
  6. 6.
    Szocs E., Vastag G., Shaban A., Kalman E., (2005) Corr. Sci. 47: 893CrossRefGoogle Scholar
  7. 7.
    Ikemiya N., Kubo T., Hara S., (1995) Surf. Sci. 323:81CrossRefGoogle Scholar
  8. 8.
    Maurice V., Strehblow H.-H., Marcus P., (1999) J. Electrochem. Soc. 146: 524CrossRefGoogle Scholar
  9. 9.
    Maurice V., Strehblow H.-H., Marcus P., (2000) Surf. Sci. 458: 185CrossRefGoogle Scholar
  10. 10.
    Strehblow H.-H., Maurice V., Marcus P., (2001) Electrochim. Acta 46: 3755CrossRefGoogle Scholar
  11. 11.
    Suggs D.W., Bard A.J., (1994) J. Am. Chem. Soc. 116: 10725CrossRefGoogle Scholar
  12. 12.
    Suggs D.W., Bard A.J., (1995) J. Phys. Chem. 99: 8349CrossRefGoogle Scholar
  13. 13.
    Vogt M.R., Lachenwitzer A., Magnussen O.M., Behm R.J., (1998) Surf. Sci. 399:49CrossRefGoogle Scholar
  14. 14.
    Magnussen O.M., Vogt M.R., (2000) Phys. Rev. Lett. 85: 357CrossRefGoogle Scholar
  15. 15.
    Magnussen O.M., Zitzler L., Gleich B., Vogt M.R., Behm R.J., (2001) Electrochim. Acta 46: 3725CrossRefGoogle Scholar
  16. 16.
    Magnussen O.M., (2002) Chem. Rev. 102: 679CrossRefGoogle Scholar
  17. 17.
    Broekmann P., Anastasescu M., Spaenig A., Lisowski W., Wandelt K., (2001) J. Electroanal. Chem. 500: 241CrossRefGoogle Scholar
  18. 18.
    Kunze J., Maurice V., Klein L.H., Strehblow H.-H., Marcus P., (2003) J. Electroanal. Chem. 554–555: 113CrossRefGoogle Scholar
  19. 19.
    Kunze J., Maurice V., Klein L.H., Strehblow H.-H., Marcus P., (2004) Corr. Sci. 46: 245CrossRefGoogle Scholar
  20. 20.
    Wilms M., Kruft M., Bermes G., Wandelt K., (1999) Rev. Sci. Instr. 70(7): 3641CrossRefGoogle Scholar
  21. 21.
    Broekmann P., Spaenig A., Hommes A., Wandelt K., (2002) Surf. Sci. 517(1–3): 123CrossRefGoogle Scholar
  22. 22.
    P. Broekmann, A. Spaenig, A. Hommes and K. Wandelt (to be published)Google Scholar
  23. 23.
    Inukai J., Osawa Y., Itaya K., (1998) J. Phys. Chem. B. 102: 10034CrossRefGoogle Scholar
  24. 24.
    Hommes A., Spaenig A., Broekmann P., Wandelt K., (2003) Surf. Sci. 547:239CrossRefGoogle Scholar
  25. 25.
    P. Broekmann, S. Huemann, H. Zajonz, R. Hunger and K. Wandelt (to be published)Google Scholar
  26. 26.
    Andryushechkin B.V., Eltsov K.N., Shevlyuga V.M., Bardi U., Cortigiani B., (2002) Surf. Sci. 497: 59CrossRefGoogle Scholar
  27. 27.
    Andryushechkin B.V., Eltsov K.N., Shevlyuga V.M., (2004) Surf. Sci. 566–568: 203CrossRefGoogle Scholar
  28. 28.
    Mattson E., Bockris J.O., (1959) Trans. Faraday. Soc. 55: 1586CrossRefGoogle Scholar
  29. 29.
    Bertocci U., (1966) Electrochim. Acta 11: 1261CrossRefGoogle Scholar
  30. 30.
    Bertocci U., Turner D.R., (1974) In: Bard A.J. (eds) Encyclopedia of Electrochemistry of the Elements, Vol III. Marcel Dekker, New York, pp. 383Google Scholar
  31. 31.
    Wong D.Y., Coller B.A.W., MacFarlane D.R., (1993) Electrochim. Acta 38: 2121CrossRefGoogle Scholar
  32. 32.
    De Agostini A., Schmidt E., Lorenz W.J., (1989) Electrochim. Acta 34: 1243CrossRefGoogle Scholar
  33. 33.
    Irish D.E., Stolberg L., Shoesmith D.W., (1985) Surf. Sci. 158: 238CrossRefGoogle Scholar
  34. 34.
    Hollemann-Wiberg, Lehrbuch der Anorganischen Chemie, deGruyter (1995)Google Scholar
  35. 35.
    Dobelhofer K., Wasle S., Soares D.M., Weil K.G., Weinberg G., Ertl G., (2003) Z. Phys. Chem. 217: 479Google Scholar
  36. 36.
    Broekmann P., Wilms M., Kruft M., Stuhlmann C., Wandelt K., (1999) J. Electroanal. Chem. 467: 307CrossRefGoogle Scholar
  37. 37.
    Giesen M., Baier S., (2001) J. Phys.: Cond. Matter. 13:5009CrossRefGoogle Scholar
  38. 38.
    Giesen M., (2001) Prog. Surf. Sci. 68: 1CrossRefGoogle Scholar
  39. 39.
    S. Ye and K. Uosaki. in A.J. Bard and M. Stratmann (eds), Encyclopedia of Electrochemistry, Volume 1: Thermodynamics and Electrified Interfaces (Wiley-VCH, 2001)Google Scholar
  40. 40.
    Gregory B.W., Stickney J.L., (1991) Electroanal. Chem. 300: 543CrossRefGoogle Scholar
  41. 41.
    J.L. Stickney, T.L. Wade, B.H. Flowers, R. Vaidyanathan and U. Happek. in A.J. Bard and M. Stratmann (eds), Encyclopedia of Electrochemistry Volume 1: Thermodynamics and Electrified Interfaces. (Wiley-VCH, 2001)Google Scholar
  42. 42.
    Adzic R.R., Wang J.X., (1998) J. Phys. Chem. B 102: 6307Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Institut für Physikalische und Theoretische ChemieUniversität BonnBonnGermany

Personalised recommendations