Advertisement

Journal of Applied Electrochemistry

, Volume 36, Issue 11, pp 1187–1198 | Cite as

Electrooxidation of acetaldehyde on carbon-supported Pt, PtRu and Pt3Sn and unsupported PtRu0.2 catalysts: A quantitative DEMS study

  • H. Wang
  • Z. Jusys
  • R.J. BehmEmail author
Article

Abstract

The oxidation of acetaldehyde on carbon supported Pt/Vulcan, PtRu/Vulcan and Pt3Sn/Vulcan nanoparticle catalysts and, for comparison, on polycrystalline Pt and on an unsupported PtRu0.2 catalyst, was investigated under continuous reaction and continuous electrolyte flow conditions, employing electrochemical and quantitative differential electrochemical mass spectroscopy (DEMS) measurements. Product distribution and the effects of reaction potential and reactant concentration were investigated by potentiodynamic and potentiostatic measurements. Reaction transients, following both the Faradaic current as well as the CO2 related mass spectrometric intensity, revealed a very small current efficiency for CO2 formation of a few percent for 0.1 m acetaldehyde bulk oxidation under steady-state conditions on all three catalysts, the dominant oxidation product being acetic acid. Pt alloy catalysts showed a higher activity than Pt/Vulcan at lower potential (0.51 V), but do not lead to a better selectivity for complete oxidation to CO2. C–C bond breaking is rate limiting for complete oxidation at potentials with significant oxidation rates for all three catalysts. The data agree with a parallel pathway reaction mechanism, with formation and subsequent oxidation of COad and CH x, ad species in the one pathway and partial oxidation to acetic acid in the other pathway, with the latter pathway being, by far, dominant under present reaction conditions.

Keywords

acetaldehyde oxidation CO2 current efficiency DEMS selectivity supported catalyst 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We acknowledge financial support by the Landesstiftung Baden-Württemberg (programme ‚Mini Fuel Cells’) and by the Deutsche Forschungsgemeinschaft (project Be 1201/12–1). We are grateful to E-Tek, Inc. for the donation of the carbon supported Pt/Vulcan, PtRu/Vulcan and Pt3Sn/Vulcan catalyst samples and to the Center for Solar Energy and Hydrogen Research (ZSW) for the unsupported PtRu0.2 catalyst.

References

  1. 1.
    Shukla A.K., Christensen P.A., Hamnett A., Hogarth M.P. (1995) J. Power Sour. 55:87CrossRefGoogle Scholar
  2. 2.
    Ren X., Wilson M., Gottesfeld S. (1996) J. Electrochem. Soc. 143:L12CrossRefGoogle Scholar
  3. 3.
    Lamy C., Belgsir E.M., Léger J.-M. (2001) J. Appl. Electrochem. 31:799CrossRefGoogle Scholar
  4. 4.
    Wang H., Jusys Z., Behm R.J. (2004) J. Phys. Chem. B 108:19413CrossRefGoogle Scholar
  5. 5.
    Podlovchenko B.I., Petry O.A., Frumkin A.N., Lal H. (1966) J. Electroanal. Chem. 11:12CrossRefGoogle Scholar
  6. 6.
    Shibata M., Motoo S. (1985) J. Electroanal. Chem. 187:151CrossRefGoogle Scholar
  7. 7.
    Bittins-Cattaneo B., Wilhelm S., Cattaneo E., Buschmann H.W., Vielstich W. (1988) Ber Bunsenges Phys. Chem. 92:1210Google Scholar
  8. 8.
    Leung L.-W.H., Chang S.-C., Weaver M.J. (1989) J. Electroanal. Chem. 266:317CrossRefGoogle Scholar
  9. 9.
    Rasch B., Iwasita T. (1990) Electrochim. Acta 35:989CrossRefGoogle Scholar
  10. 10.
    Chang S.-C., Leung L.-W.H., Weaver M.J. (1989) J. Phys. Chem. 94:6013CrossRefGoogle Scholar
  11. 11.
    Cases F., Vazquez J.L., Perez J.M.,. Aldaz A., Clavilier J. (1990) J. Electroanal. Chem. 281:283CrossRefGoogle Scholar
  12. 12.
    Rodríguez J.L., Pastor E., Xia X.H., Iwasita T. (2000) Langmuir 16:5479CrossRefGoogle Scholar
  13. 13.
    Mendéz E., Rodriguez J.L., Arévalo M.C., Pastor E. (2002) Langmuir 18:763CrossRefGoogle Scholar
  14. 14.
    Silva-Chong J., Méndez E., Rodriguez J.L., Arévalo M.C., Pastor E. (2003) Electrochim. Acta 47:1441CrossRefGoogle Scholar
  15. 15.
    Kokoh K.B., Hahn F., Belgsir E.M., Lamy C., de Andrade A.R., Olivi P., Motheo A.J., Tremiliosi-Filho G. (2004) Electrochim. Acta 49:2077CrossRefGoogle Scholar
  16. 16.
    Wang H., Jusys Z., Behm R.J. (2004) Fuel Cells 4:113CrossRefGoogle Scholar
  17. 17.
    H. Wang, Z. Jusys, and R.J. Behm, J Power Sour. 154 (2006) 351Google Scholar
  18. 18.
    Schmidt T.J., Gasteiger H.A., Stäb G.D., Urban P.M., Kolb D.M., Behm R.J. (1998) J. Electrochem. Soc. 145:2354CrossRefGoogle Scholar
  19. 19.
    Schmidt T.J., Gasteiger H.A., Behm R.J. (1999) J. Electrochem. Soc. 146:1296CrossRefGoogle Scholar
  20. 20.
    Jusys Z., Behm R.J. (2001) J. Phys. Chem. B 105:10874CrossRefGoogle Scholar
  21. 21.
    Jusys Z., Kaiser J., Behm R.J. (2001) Phys. Chem. Chem. Phys. 3:4650CrossRefGoogle Scholar
  22. 22.
    H. Wang, Z. Zhao, Z. Jusys and R.J. Behm, J. Power Sour., 155 (2006) 33Google Scholar
  23. 23.
    Adams R., Schriner R.L. (1923) J. Am. Chem. Soc. 45:2171CrossRefGoogle Scholar
  24. 24.
    Lasch K., Jörissen L., Garche J. (1999) J. Power Sour. 84:225CrossRefGoogle Scholar
  25. 25.
    H. Baltruschat, 1999, in A. Wieckowski (Ed), ‚Differential Electrochemical Mass Spectrometry as a Tool for Interfacial Studies in Interfacial Electrochemistry – Theory, Experiment and Applications’ (Marcel Dekker, Inc., New York, 1999) pp. 577–597Google Scholar
  26. 26.
    Jusys Z., Massong H., Baltruschat H. (1999) J. Electrochem. Soc. 146:1093CrossRefGoogle Scholar
  27. 27.
    Wolter O., Heitbaum J. (1984) Ber Bunsenges Phys. Chem. 88:6Google Scholar
  28. 28.
    Baltruschat H., Schmiemann U. (1993) Ber Bunsenges Phys. Chem. 97:452Google Scholar
  29. 29.
    Angerstein-Kozlowska H., Conway B.E., Sharp W.B.A. (1973) J. Electroanal. Chem. 43:9CrossRefGoogle Scholar
  30. 30.
    Wang H., Wingender Ch., Baltruschat H., Lopez M., Reetz M.T. (2001) J. Electroanal. Chem. 509:163CrossRefGoogle Scholar
  31. 31.
    Jusys Z., Kaiser J., Behm R.J. (2003) Langmuir 19:6759CrossRefGoogle Scholar
  32. 32.
    Watanabe M., Motoo S. (1975) J. Electroanal. Chem. 60:267CrossRefGoogle Scholar
  33. 33.
    Watanabe M., Uchida M., Motoo S. (1987) J. Electroanal. Chem. 229:395CrossRefGoogle Scholar
  34. 34.
    Lin W.-F., Zei M.S., Eiswirth M., Ertl G., Iwasita T., Vielstich W. (1999) J. Phys. Chem. B 103:6968CrossRefGoogle Scholar
  35. 35.
    Jusys Z., Kaiser J., Behm R.J. (2002) Electrochim. Acta 47:3693CrossRefGoogle Scholar
  36. 36.
    Schmidt T.J., Gasteiger H.A., Behm R.J. (1999) J. New Mat. Electrochem. Syst. 2:27Google Scholar
  37. 37.
    Boucher A.C., Alonso-Vante N., Dassenoy F., Vogel W. (2003) Langmuir 19:10885CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department Surface Chemistry and CatalysisUniversity of UlmUlmGermany

Personalised recommendations