Skip to main content

Advertisement

Log in

Photoelectrochemical studies on the n-MoS2–Cysteine interaction

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The amino acid Cysteine, which plays a significant role as a charge transfer bridge, e.g. in redox proteins like Ferredoxin or Mo-Nitrogenase and in artificial systems like Self Assembled Monolayers (SAM’s) on gold, was adsorbed on both, natural and synthetic molybdenum disulfide and the changes were studied with combined photoelectrochemical and microwave conductivity techniques. In contrast to pyrite (FeS2), where modification with cysteine enhances the electrochemical corrosion, with molybdenum disulfide this is not the case. It was found that cysteine chemically interacts with both dangling bonds of molybdenum on edge sites as well as with d 2z orbitals of molybdenum that protrude through the van der Waals surface. The interaction with the edge sites leads to a decrease in dark current and hydrogen evolution activity. In inert electrolyte the interaction with the van der Waals surface leads to a decrease in decomposition-photocurrents due to the action of cysteine as a recombination centre for charge carriers. If, however, a reducing agent such as hydroquinone/quinone or hexacyanoferrate is added, photocurrents increase because the adsorbed cysteine now acts as charge transfer bridge and no longer as a recombination centre. This is supported by a significantly increased microwave conductivity indicating increased charge carrier lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Daizadeh, D.M. Medvedev, and A.A. Stuchebrukhov (2002) Mol. Biol. Evol. 19:406

    CAS  Google Scholar 

  2. Lippard S.J., Berg J.M. (1995) Bioanorganische Chemie. Spektrum Akademischer Verlag, Heidelberg Berlin: Oxford

    Google Scholar 

  3. Tian Y., Shioda M., Kasahara S., Okajima T., Mao L., Hisabori T., Ohsaka T. (2002) Biochim. Biophys. Acta 1569:151

    CAS  Google Scholar 

  4. Wang S., Du D. (2002). Sens 2:41

    Article  CAS  Google Scholar 

  5. Rajh T., Ostafin A.E., Micic O.I., Tiede D.M., Thurnauer M.C. (1996). J. Phys. Chem. 100:4538

    Article  CAS  Google Scholar 

  6. Rajh T. and Thurnauer M. (2001) Semiconductor assisted metal deposition for nanolithography applications, Pat.-No. 6.271.130, University of Chicago, USA

  7. El-Halim A.M.A., Alonso-Vante N., Tributsch H. (1995). J. Electroanal. Chem. 399:29

    Article  Google Scholar 

  8. Rojas-Chapana JA, Giersig M, Tributsch H (1996). Fuel 75:923

    Article  CAS  Google Scholar 

  9. Barkschat A., Bildgebende elektrochemische Untersuchungen an Grenzflächen mit metallzentrierten Elektronenübertragungen, Dissertation (Freie University, Berlin, 2004)

  10. Schlichthorl G., Tributsch H. (1992). Electrochim. Acta 37:919

    Article  Google Scholar 

  11. Tributsch H., Schlichthorl G., Elstner L. (1993). Electrochim. Acta 38:141

    Article  CAS  Google Scholar 

  12. Schlichthorl G., Untersuchung der Ladungsträgerkinetik in photoelektrochemische Systemen mit lichtinduzierter Mikrowellenreflektion, Dissertation (Freie Universität, Berlin, 1991)

  13. Tributsch H. In White R.E., Conway B.E., Bockris J.O.M. (eds), ‘Modern aspects of electrochemistry’, vol 33. (Kluwer Academic/Plenum publisher, New York, 1999), pp. 435–522.

  14. Bergmann H., Czeska B., Haas I., Mohsin B., and K.-H. Wandner (1992) in Czack G., Katscher H., Kirschstein G., Warkentin E. (eds) Gmelin handbook of inorganic and organometallic chemistry, vol. 7, 8th ed. Springer

  15. Fasman G.D. (1976) in CRC Handbook of Biochemistry and Molecular Biology, Physical Chemical Data, Vol. 1, 3rd ed. (Cleveland, Ohio,), pp. 122–130.

  16. Ralph T.R., Hitchman M.L., Millington J.P., Walsh F.C. (1994) J. Electroanal. Chem. 375:1

    Article  CAS  Google Scholar 

  17. Ralph T.R., Hitchman M.L., Millington J.P., Walsh F.C. (1994) J. Electroanal. Chem. 275:17

    Article  Google Scholar 

  18. Decker F, Scrosati B (1992) In Aruchamy A (ed) Photoelectrochemistry and Photovoltaics of Layered Semiconductors, vol 14. Kluwer Academic Publishers, Dordrecht, pp 121–154

    Google Scholar 

  19. Gerischer H, Kautek W (1982). J. Electroanal. Chem. 137:239

    Article  Google Scholar 

  20. Haneman D., Tributsch H. (1993) Chem. Phys. Lett. 216:81

    Article  CAS  Google Scholar 

  21. Tsyganenko A.A., Can F., Travert A., Mauge F. (2004) Appl. Catal. A 268:189

    Article  CAS  Google Scholar 

  22. Mauge F., Lamotte J., Nesterenko N.S., Manoilova O. and Tsyganenko A.A. (2001) Catal. Today 70:271

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. S. Fiechter and Dr. Y. Tomm for fabrication and providing of the synthetic crystals and Dr. T. Dittrich and T. Guminskaya for performing SPV measurements. Special thanks go to S. Seeger, F. Wünsch, P. Bogdanoff and M. Kunst for their time and for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Tributsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moehl, T., Halim, M.A.E. & Tributsch, H. Photoelectrochemical studies on the n-MoS2–Cysteine interaction. J Appl Electrochem 36, 1341–1346 (2006). https://doi.org/10.1007/s10800-006-9172-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-006-9172-5

Keywords

Navigation