Skip to main content
Log in

Thermal runaway of valve-regulated lead-acid batteries

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Valve-regulated lead-acid (VRLA) batteries that have aged on a float charge at constant voltage occasionally suffer from thermal runaway. Operating conditions for a VRLA battery have been simulated by changing the electrolyte saturation level in the separator and the ambient temperature. The charge current, battery temperature and cell overpressure were measured during current-limited constant-voltage charging. The experiments show that applied voltage, saturation level and ambient temperature are significant variables in the oxygen cycle. However, the saturation level of the electrolyte in the separator pore volume is critical. When it is lower than 80%, thermal runaway occurs readily. Significant corrosion of the positive grid and poor conductivity between the grid and the active mass (AM) is also found in aged VRLA batteries, and many inactive PbSO4 crystals appear on the negative plates. As a result, both positive and negative plates have a very high resistance, which can accelerate thermal runaway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.A.J. Rand, P.T. Moseley, J. Garche and C.D. Parker, ‘Valve-Regulated Lead-Acid Batteries’ (Elsevier, Amsterdam, 2004) p. 2

  2. Pascoe P.E., Anbuky A.H. (2004) Energy Conversion Manage. 45:1015

    Article  CAS  Google Scholar 

  3. Moseley P.T. (2000) J. Power Sources 88:71

    Article  CAS  Google Scholar 

  4. Onoda Y. (2000) J. Power Sources 88:101

    Article  CAS  Google Scholar 

  5. Dietz H., Radwan M., Garche J., Döring H., Wiesener K. (1991) J. Appl. Electrochem. 21:221

    Article  CAS  Google Scholar 

  6. Timmons J., Kurian R., Goodman A., Johnson W.R. (2004) J. Power Sources 136:372

    Article  CAS  Google Scholar 

  7. Wagner R., Sauer D.U. (2001) J. Power Sources 95:141

    Article  CAS  Google Scholar 

  8. May G.J. (2004) J. Power Sources 133:110

    Article  CAS  Google Scholar 

  9. Häring P., Giess H. (2001) J. Power Sources 95:153

    Article  Google Scholar 

  10. Li Z., Guo Y., Wu L., Perrin M., Döring H., Garche J. (2002) J. Electrochem. Soc. 149:A934

    Article  CAS  Google Scholar 

  11. Berndt D. (2001) J. Power Sources 100:29

    Article  CAS  Google Scholar 

  12. D.A.J. Rand, P.T. Moseley, J. Garche and C.D. Parker, ‘Valve-Regulated Lead-Acid Batteries’ (Elsevier, Amsterdam, 2004) p. 7

  13. R.F. Nelson, Proceedings of the 4th International Lead-Acid Battery Seminar, 25-27 April (1990), San Francisco, USA, International Lead Zinc Research Organization, Inc. p. 31

  14. R.K. Jaworski and J.M. Harkins, Proceedings of the 1996 18th International Telecommunications Energy Conference, INTELEC, Oct 6–10 (1996), Boston, MA, USA p. 45

  15. S. Misra and A.J. Williamson, Proceedings of the 1998 20th International Telecommunications Energy Conference, INTELEC, Oct 4–8 (1998), San Francisco, CA, USA p. 536

  16. Culpin B., Wainwright P.L. (2001) IEE Conference Publication 484:361

    Google Scholar 

  17. W.T. Rutledge and R.J. Bowers, Proceedings of the 16th International Telecommunications Energy Conference, Vancouver, BC, Can, Oct 30–Nov 3 (1994), p. 168

  18. D. Berndt (1993) Maintenance-Free Batteries, Research Studies Press, Taunton, Somerset, UK, p. 32; p. 157

    Google Scholar 

  19. Berndt D. (1993) Maintenance-Free Batteries. Wiley, New York, p. 306

    Google Scholar 

  20. Pavlov D. (1997) J. Power Sources 64:131

    Article  CAS  Google Scholar 

  21. Culpin B. (2004) J. Power Sources 133:79

    Article  CAS  Google Scholar 

  22. E. Boisvert, Proceedings of the 23rd International Telecommunications Energy Conference, Oct 14–18 (2001), Edinburgh, p. 126

  23. Moseley P.T. (2001) J. Power Sources 95:218

    Article  CAS  Google Scholar 

  24. Perrin M., Döring H., Ihmels K., Weiss A., Vogel E., Wagner R. (2001) J. Power Sources 95:85

    Article  CAS  Google Scholar 

  25. Bullock K.R. (2003) J. Power Sources 116:8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to NSFC (No. 20373037) in China for financial support of this work and thank Dr. Kathryn Bullock for her assistance with language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonglang Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J., Guo, Y. & Zhou, X. Thermal runaway of valve-regulated lead-acid batteries. J Appl Electrochem 36, 1083–1089 (2006). https://doi.org/10.1007/s10800-006-9170-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-006-9170-7

Keywords

Navigation