Journal of Applied Electrochemistry

, Volume 36, Issue 9, pp 1005–1009 | Cite as

Hydrogen evolution on Ni/WC composite coatings

  • V. MarinovićEmail author
  • J. Stevanović
  • B. Jugović
  • M. Maksimović


The catalytic activity for the hydrogen evolution reaction (HER) of Ni/WC composites obtained by electrochemical deposition of nickel from a conventional Watt’s bath, using two different ways of depositing the WC particles, was investigated. All the composite coatings exhibited electrocatalytic activity for the HER larger than that of pure Ni in both alkaline and acid solution. The activity increased with increasing content of WC in the coating and, in the pulsed current regime, with increasing frequency of pulsation. In addition, coatings with smaller particles incorporated exhibited higher activity than those with larger particles. At a constant potential, an order of magnitude higher current densities were obtained in some cases.


catalyst composite electrodeposition hydrogen evolution (HER) Ni/WC 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank the Ministry of Science and Environmental Protection of the Republic of Serbia (Contract No. 142044) and Prof. Snežana Gojković from the Faculty of Technology and Metallurgy, University of Belgrade for valuable discussions concerning the final version of this paper.


  1. 1.
    M. Enyo, in B.E. Conway, J.O’M. Bockris, E. Yeager, S.U.M. Khan and R.E. White (Eds), ‚Comprehensive Treatise of Electrochemistry’, Vol. 7 (Plenum Press, New York, 1983), p. 241.Google Scholar
  2. 2.
    B.E. Conway (1987) Sci. Prog. Oxford 71:479Google Scholar
  3. 3.
    J.O’M. Bockris, in B.E. Conway, E. Yeager and R.E. White (Eds), ‚Comprehensive Treatise of Electrochemistry’, Vol. 3 (Plenum Press, New York, 1981) 1,505Google Scholar
  4. 4.
    Wendt H., Imarisio G. (1988) J. Appl. Electrochem. 18:1CrossRefGoogle Scholar
  5. 5.
    Lasia A., Rami A. (1990) J. Electroanal. Chem. 294:123CrossRefGoogle Scholar
  6. 6.
    Krstajić N., Popović M., Grgur B., Vojnović M., Šepa D. (2001) J. Electroanal. Chem. 512:16CrossRefGoogle Scholar
  7. 7.
    Bockris J.O’M., Potter E.C. (1952) J. Chem. Phys. 20:614CrossRefGoogle Scholar
  8. 8.
    E. Yeager and D. Tryk, in T.N. Veziroglu and J.B.Taylor (Eds), ‚Hydrogen Energy Progress V’, Vol. 2 (Pergamon Press, Oxford, 1986) p. 927Google Scholar
  9. 9.
    Conway B.E., Angerstein Kozlowska H., Sattar M.A., Tilak B.V. (1983) J. Electrochem. Soc. 130:1825CrossRefGoogle Scholar
  10. 10.
    Chen W.X. (2001) Int. J. Hydrogen Energy 26(6):603CrossRefGoogle Scholar
  11. 11.
    Divisek J., Schmitz H., Steffen B. (1994) Electrochim. Acta 39(11/12):1723CrossRefGoogle Scholar
  12. 12.
    Fan C., Piron D.L. (1995) Surf. Coat. Technol. 73:91CrossRefGoogle Scholar
  13. 13.
    Iwakura C., Furukawa N., Tanaka M. (1972) Electrochim. Acta 37(4):757CrossRefGoogle Scholar
  14. 14.
    M.M. Jakšić (1984) Electrochim. Acta 29:1539CrossRefGoogle Scholar
  15. 15.
    Jakšić J.M., Vojnović M.V., Krstajić N.V. (2000) Electrochim. Acta 45:4151CrossRefGoogle Scholar
  16. 16.
    Jakšić M.M. (1984) Electrochim. Acta 35:1529Google Scholar
  17. 17.
    Savadogo O. (2002) Int. J. Hydrogen Energy 27:157CrossRefGoogle Scholar
  18. 18.
    Ezaki J., Morinaga M., Watanabe S. (1993) Electrochim. Acta 38:557CrossRefGoogle Scholar
  19. 19.
    Bianchi G., Mazza F., Trasatti S. (1964) Z. Phys. Chem. 40:226Google Scholar
  20. 20.
    Nikolov I., Petrov K., Vitanov T., Gushev A. (1983) J. Hydrogen Energy 20:71Google Scholar
  21. 21.
    Sokolsky D.V., Palanker V.Sh., Baybatyrov E.N. (1975) Electrochim. Acta 20:71CrossRefGoogle Scholar
  22. 22.
    Armstrong R., Bell M. (1978) Electrochim. Acta 23:1111CrossRefGoogle Scholar
  23. 23.
    Zoltowsky P. (1980) Electrochim. Acta 25:1547CrossRefGoogle Scholar
  24. 24.
    Boikova G.V., Zhutaeva G.V., Tarasevich M.R.,Bagotzki V.S., Shumilova A. (1980) Elektrokhimiya 16:84Google Scholar
  25. 25.
    Sokolsky D.V., Palanker V.Sh., Baybatyrov E.N., Bogdanova E.A. (1972) Elektrokhimiya 8:1754Google Scholar
  26. 26.
    Palanker V.Sh., Preiza J., Baybatyrov E.N., Blagoveshchenskaya I.N. (1973) Elektrokhimiya 9:854Google Scholar
  27. 27.
    Mund K., Richter G., Sturm F.v. (1971) Colln. Czech. Chem. Commun. 36:439Google Scholar
  28. 28.
    Böhm H. (1970) Electrochim. Acta 15:1273CrossRefGoogle Scholar
  29. 29.
    Tsirlina G.A., Petrii O.A. (1987) Electrochim. Acta 32:649CrossRefGoogle Scholar
  30. 30.
    Ross P., Stonehart P. (1977) J. Catal. 48:42CrossRefGoogle Scholar
  31. 31.
    Jugović B., Stevanović J., Maksimović M. (2004) J. Appl. Electrochem. 34:175CrossRefGoogle Scholar
  32. 32.
    Stevanović J., Jugović B., Marinović V., Maksimović M. (2005) Formation and Properties of Ni /WC Composite Coatings. In: Nunez M. (ed.) Metal electrodeposition. Nova Science Publishers, Inc., New York, pp 79–97Google Scholar
  33. 33.
    Surender M., Balasubramaniam R., Basu B. (2004) Surf. Coat. Technol. 187(1):93CrossRefGoogle Scholar
  34. 34.
    Stroumbouli M., Gyftou P., Pavlatou E.A., Spyrellis N. (2005) Surf. Coat. Technol. 195(2–3):325CrossRefGoogle Scholar
  35. 35.
    Sombatsompop N., Sukeemith K., Markpin T., Tareelap N. (2004) Mater. Sci. Eng. A 381:175CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • V. Marinović
    • 1
    Email author
  • J. Stevanović
    • 2
  • B. Jugović
    • 1
  • M. Maksimović
    • 3
  1. 1.Institute of Technical Sciences of the Serbian Academy of Science and ArtsBelgradeSerbia and Montenegro
  2. 2.Institute of Electrochemistry – Institute of Chemistry, Technology and MetallurgyBelgradeSerbia and Montenegro
  3. 3.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia and Montenegro

Personalised recommendations