Advertisement

Journal of Applied Electrochemistry

, Volume 36, Issue 9, pp 999–1003 | Cite as

Photoluminescence properties of porous silicon layers prepared by electrochemical etching in extremely dilute HF solutions

  • Hideki KoyamaEmail author
Article

Abstract

Dilute HF solutions with concentrations down to 0.03% have been used to obtain luminescent porous silicon (PSi) layers on p-type Si wafers. The experimental results show that with a constant etching time of 30 min, PSi layers with sufficient luminescence efficiencies can be formed for HF concentrations as low as 0.1%. Because of a significantly lowered critical current density, only very low etching current densities of  ≤0.1 mA cm−2 can result in the formation of luminescent PSi samples in 0.1% HF solutions. A notable result is that these low etching current densities cannot be used to form luminescent PSi layers in concentrated ( ≥1%) HF solutions. The behavior of PL intensity as a function of etching current density has been analyzed over a wide range of HF concentration. The PL intensity is determined by the ratio of the etching current density to the critical current density, suggesting that the presence of silicon oxides plays an important role in the formation of luminescent Si nanostructures in PSi layers.

Key words

anodization etching nanocrystal nanostructure photoluminescence porous silicon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported in part by a research grant from Hyogo Science and Technology Association and by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science.

References

  1. 1.
    Canham L.T. (1990) Appl. Phys. Lett. 57:1046CrossRefGoogle Scholar
  2. 2.
    Lockwood D.J. (1994) Solid State Commun. 92:101CrossRefGoogle Scholar
  3. 3.
    Cullis A.G., Canham L.T., Calcott P.D.J. (1997) J. Appl. Phys. 82:909CrossRefGoogle Scholar
  4. 4.
    A. Uhlir, Jr. (1956) Bell Syst. Tech. J. 35:333Google Scholar
  5. 5.
    Turner D.R. (1958) J. Electrochem. Soc. 105:402CrossRefGoogle Scholar
  6. 6.
    Cullis A.G., Canham L.T. (1991) Nature 353:335CrossRefGoogle Scholar
  7. 7.
    Koyama H., Shima N., Koshida N. (1996). Phys. Rev. B 53:R13291CrossRefGoogle Scholar
  8. 8.
    Wolkin M.V., Jorne J., Fauchet P.M., Allan G., Delerue C. (1999) Phys. Rev. Lett. 82:197CrossRefGoogle Scholar
  9. 9.
    Gelloz B., Koshida N. (2000). J. Appl. Phys. 88:4319CrossRefGoogle Scholar
  10. 10.
    Bondarenko V.P., Dorofeev A.M., Kazuchits N.M. (1992). Microelectron. Eng. 28:447CrossRefGoogle Scholar
  11. 11.
    Vincent G. (1994) Appl. Phys. Lett. 64:2367CrossRefGoogle Scholar
  12. 12.
    Pavesi L., Mazzoleni C. (1995) Appl. Phys. Lett. 67:2983CrossRefGoogle Scholar
  13. 13.
    Kovalev D., Polisski G., Diener J., Heckler H., Künzner N., Timoshenko V.Yu., Koch F. (2001). Appl. Phys. Lett. 78:916CrossRefGoogle Scholar
  14. 14.
    Koyama H. (2004) J. Appl. Phys. 96:3716CrossRefGoogle Scholar
  15. 15.
    R.L. Smith and D.C. Scott, IEEE Trans. Biomed. Eng. BME-33 (1986) 83Google Scholar
  16. 16.
    Dancil K.-P.S., Greiner D.P., Sailor M.J. (1999). J. Am. Chem. Soc. 121:7925CrossRefGoogle Scholar
  17. 17.
    Koshida N., Koyama H., Kiuchi Y. (1986) Jpn. J. Appl. Phys. 25:1069CrossRefGoogle Scholar
  18. 18.
    Ünal B., Bayliss S.C. (1996). J. Appl. Phys. 80:3532CrossRefGoogle Scholar
  19. 19.
    Koshida N., Ozaki T., Sheng X., Koyama H. (1995). Jpn. J. Appl. Phys. 34: L705CrossRefGoogle Scholar
  20. 20.
    Shinoda H., Nakajima T., Ueno K., Koshida N. (1999). Nature 400:853CrossRefGoogle Scholar
  21. 21.
    Parkhutik V.P., Canham L.T. (2000). Phys. Stat. Sol. (a) 182:591CrossRefGoogle Scholar
  22. 22.
    Zhang X.G., Collins S.D., Smith R.L. (1989) J. Electrochem. Soc. 136:1561CrossRefGoogle Scholar
  23. 23.
    Lehmann V. (1993). J. Electrochem. Soc. 140:2836CrossRefGoogle Scholar
  24. 24.
    Belaïdi A., Safi M., Ozanam F., Chazalviel J.-N., Gorochov O. (1999) J. Electrochem. Soc. 146:2659CrossRefGoogle Scholar
  25. 25.
    Bomchil G., Herino R., Barla K., Pfister J.C. (1983). J. Electrochem. Soc. 130:1611CrossRefGoogle Scholar
  26. 26.
    Beale M.I.J., Chew N.G., Uren M.J., Cullis A.G., Benjamin J.D. (1985). Appl. Phys. Lett. 46:86CrossRefGoogle Scholar
  27. 27.
    Ban T., Koizumi T., Haba S., Koshida N., Suda Y. (1994) Jpn. J. Appl. Phys. 33:5603CrossRefGoogle Scholar
  28. 28.
    Ohmukai M., Tsutsumi Y. (1997). Jpn. J. Appl. Phys. 36:L292CrossRefGoogle Scholar
  29. 29.
    Smith R.L., Chuang S.-F., Collins S.D. (1988) J. Electron. Mater. 17:533CrossRefGoogle Scholar
  30. 30.
    Propst E.K., Rieger M.M., Vogt K.W., Kohl P.A. (1994). Appl. Phys. Lett. 64:1914CrossRefGoogle Scholar
  31. 31.
    Koshida N., Koyama H. (1991). Jpn. J. Appl. Phys. 30:L1221CrossRefGoogle Scholar
  32. 32.
    A. Halimaoui, in L. Canham (ed.), ‘Properties of Porous Silicon’, EMIS Datareviews Series no.18 (IEE INSPEC, London, 1991), p.12Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Practical Life Studies, Technology Education GroupHyogo University of Teacher EducationYashiroJapan

Personalised recommendations