Journal of Applied Electrochemistry

, Volume 36, Issue 8, pp 913–918 | Cite as

Electro-Catalytic Oxidation of Methanol on a Ni–Cu Alloy in Alkaline Medium

  • M. JafarianEmail author
  • R.B. Moghaddam
  • M.G. Mahjani
  • F. Gobal


The electro-catalytic oxidation of methanol on a Ni–Cu alloy (NCA) with atomic ratio of 60/40 having previously undergone 50 potential sweep cycles in the range 0–600 mV vs. (Ag/AgCl) in 1 m NaOH was studied by cyclic voltammetry (CV), chronoamperometry (CA) and impedance spectroscopy (EIS). The electro-oxidation was observed as large anodic peaks both in the anodic and early stages of the cathodic direction of potential sweep around 420 mV vs. (Ag/AgCl). The electro-catalytic surface was at least an order of magnitude superior to a pure nickel electrode for methanol oxidation. The diffusion coefficient and apparent rate constant of methanol oxidation were found to be 2.16 × 10−4 cm2 s−1 and 1979.01 cm3 mol−1 s−1, respectively. EIS studies were employed to unveil the charge transfer rate as well as the electrical characteristics of the catalytic surface. For the electrochemical oxidation of methanol at 5.0 m concentration, charge transfer resistance of nearly 111 Ω was obtained while the resistance of the electro-catalyst layer was ca. 329 Ω.


electro-catalytic oxidation methanol nickel nickel–copper alloy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Financial support of the research council of K. N. Toosi University of Technology is gratefully acknowledged. The authors also extend gratitude to Mr. M. Asgari for the skillful preparation of alloy samples.


  1. 1.
    Wasmus S. and Küver A. (1999) J. Electroanal. Chem. 461:14CrossRefGoogle Scholar
  2. 2.
    Ren X., Zelenay P., Thomas S., Davey J. and Gottesfeld S. (2000) J Power Sources 86:111CrossRefGoogle Scholar
  3. 3.
    Golikand A.N. and Golabi S.M. (2005) J. Power Sources 145:116CrossRefGoogle Scholar
  4. 4.
    Golikand A.N., Shahrokhian S., Asgari M., Maragheh M.G., Irannejad L. and Khanchi A. (2005) J Power Sources 144:21CrossRefGoogle Scholar
  5. 5.
    Breiter M. (1967) Electrochim. Acta 12:1213CrossRefGoogle Scholar
  6. 6.
    Schell M (1998) J. Electroanal Chem. 457:221CrossRefGoogle Scholar
  7. 7.
    Nonaka H. and Matsumura Y. (2002) J. Electroanal. Chem. 520:101CrossRefGoogle Scholar
  8. 8.
    Parsons R. and Vander Noot T. (1988). J. Electroanal. Chem. 257:9CrossRefGoogle Scholar
  9. 9.
    Abdel Rahim M.A., Abdel Hameed R.M. and Khalil M.W. (2004). J. Power Sources 134:160CrossRefGoogle Scholar
  10. 10.
    Samant P.V. and Fernandes J.B. (1999) J. Power Sources 79:114CrossRefGoogle Scholar
  11. 11.
    Janssen M.M.P. and Moolhuysen J. (1976) Electrochim. Acta. 21:861CrossRefGoogle Scholar
  12. 12.
    Beden B., Kadirgan F., Lamy C. and Leger J.M. (1982). J. Electroanal. Chem. 142:171CrossRefGoogle Scholar
  13. 13.
    Burstein G.T., Barnett C.J., Kucernak A.R. and Williams K.R. (1997) Catal. Today 38:425CrossRefGoogle Scholar
  14. 14.
    Jafarian M., Mahjani M.G., Heli H., Gobal F., Khajehsharifi H. and Hamedi M.H. (2003) Electrochim. Acta 48: 3423CrossRefGoogle Scholar
  15. 15.
    Cubeiro M.L. and Fierro J.L.G. (1998) Appl. Catal. 168:307CrossRefGoogle Scholar
  16. 16.
    Fleischmann M., Korinek K. and Pletcher D. (1971) J. Electroanal. Chem. 31:39CrossRefGoogle Scholar
  17. 17.
    Heli H., Jafarian M., Mahjani M.G. and Gobal F. (2004). Electrochim. Acta 49:4999CrossRefGoogle Scholar
  18. 18.
    Paixao T.R.L.C., Corbo D. and Bertotti M. (2002). Anal. Chim. Acta 472:123CrossRefGoogle Scholar
  19. 19.
    Kano K., Torimura M., Esaka Y., Goto M. and Ueda T. (1994) J. Electroanal. Chem. 372:137CrossRefGoogle Scholar
  20. 20.
    Xie Y. and Huber C.O. (1991) Anal. Chem. 63:1714CrossRefGoogle Scholar
  21. 21.
    Burke L.D. and O’ Dwyer K.J. (1991). Electrochim. Acta 36:1937CrossRefGoogle Scholar
  22. 22.
    Fan C., Piron D.L., Sleb A. and Paradis P. (1994). J. Electrochem. Soc. 141:382CrossRefGoogle Scholar
  23. 23.
    Wen T.C., Hu C.C. and Li Y.J. (1993). J. Electrochem. Soc. 140:2554CrossRefGoogle Scholar
  24. 24.
    Bard A.J., Parsons R. and Jordan J. (eds) (1985) Standard Potentials in Aqueous Solutions. Marcel Dekker, NewYorkGoogle Scholar
  25. 25.
    Jafarian M., Mahjani M.G., Heli H., Heydarpoor M. and Gobal F. (2003) Electrochem. Commun. 5:184CrossRefGoogle Scholar
  26. 26.
    Taraszewska J. and Roslonek G. (1994) J. Electroanal. Chem. 364:209CrossRefGoogle Scholar
  27. 27.
    El-Shafei A.A. (1999) J. Electroanal. Chem. 471:89CrossRefGoogle Scholar
  28. 28.
    Kim M.-S., Hwang T.-S. and Kim K.-B. (1997) J. Electrochem. Soc. 144:151CrossRefGoogle Scholar
  29. 29.
    Hahn F., Beden B., Croissant M.J. and Lamy C. (1996) Electrochim. Acta 31:335CrossRefGoogle Scholar
  30. 30.
    A. Clark, in The Chemisorptive Bond, Basic Concepts, Academic press, NY & London, (1974) p. 57Google Scholar
  31. 31.
    Roslonek G. and Taraszewska J. (1992). J. Electroanal. Chem. 325:285CrossRefGoogle Scholar
  32. 32.
    Schebler-Guzam R.-S., Vilche J.R. and Arvia A.J. (1978). Corros. Sci. 18:441CrossRefGoogle Scholar
  33. 33.
    Ohi S (1989) Vapor-Liquid Equilibrium Data, Physical Science Data Series, vol. 37. Elsevier, Amsterdam, pp. 94Google Scholar
  34. 34.
    A.J. Bard and L.R. Faulkner Electrochemical Methods. Wiley, Chapter 12 (2001)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • M. Jafarian
    • 1
    Email author
  • R.B. Moghaddam
    • 1
  • M.G. Mahjani
    • 1
  • F. Gobal
    • 2
  1. 1.Department of ChemistryK. N. Toosi University of TechnologyTehranIran
  2. 2.Faculty of ChemistrySharif University of TechnologyTehranIran

Personalised recommendations