Skip to main content
Log in

Amperometric determination of thiourea in alkaline media on a copper oxide–copper electrode

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A copper oxide–copper electrode was tested in alkaline media for the anodic electrochemical detection of thiourea (TU). The correlation between the history of the electrode and potential range for optimum sensing of the particular susceptible species was analysed by electrochemical and surface layer techniques. The chemical composition and morphology of surface layers were examined using the SEM/EDX technique. Electrochemical data were obtained by cyclic voltammetry (CV) and chronoamperometry (CA). The linear calibration plots for an amperometric detection of TU in a delimited potential range, using CV and CA, were obtained for the 1–8 mM concentration range. Some considerations on the correlation between TU, electrode formation and polarization conditions are proposed. A copper oxide–copper electrode can be used as an inexpensive alternative for amperometric determination of TU in alkaline media without fouling the electrode surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iwamoto M., Osteryoung R.A. (1984) J. Electroanal. Chem. 169:181

    Article  CAS  Google Scholar 

  2. Spataru N., Banica F.G. (2001) Analyst. 126:1907

    Article  CAS  Google Scholar 

  3. Smyth M.R., Osteryoung J.G. (1977) Anal. Chem. 49:2310

    Article  CAS  Google Scholar 

  4. Vandeberg P.J., Johnson D.C. (1993) J. Electroanal. Chem. 362:129

    Article  CAS  Google Scholar 

  5. Spataru N., Spataru T., Fujishima A. (2005) Electroanalysis. 17:800

    Article  CAS  Google Scholar 

  6. Hepel M., Bruckenstein S. (1987) Electrochim. Acta. 32:41

    Article  CAS  Google Scholar 

  7. Yarnitzky Ch., Schreiber-Stanger R. (1986) J. Electroanal. Chem. 214:65

    Article  CAS  Google Scholar 

  8. Bolzan A.E., Haseeb A.S.M.A., Schilardi P.L., Piatti R.C.V., Salvarezza R.C., Arvia A.J. (2001) J Electroanal Chem 500:533

    Article  CAS  Google Scholar 

  9. Haseeb A.S.M.A., Schilardi P.L., Bolzan A.E., Piatti R.C.V., Salvarezza R.C. (2001) J. Electroanal. Chem. 500:543

    Article  CAS  Google Scholar 

  10. Bolzan A.E., Wakenge I.B., Piatti R.C.V., Salvarezza R.C., Arvia A.J. (2001) J. Electroanal. Chem. 501:241

    Article  CAS  Google Scholar 

  11. Alodan M., Smyrl W. (1998) Electrochim. Acta. 44:299

    Article  CAS  Google Scholar 

  12. Kao Y.L., Tu G.C., Huang C.A., Chang J.H. (2004) Mat. Sci. Eng. A. 382:104

    Article  Google Scholar 

  13. Lukomska A., Smolinski S., Sobkowski J. (2001) Electrochim. Acta. 46:3111

    Article  CAS  Google Scholar 

  14. Tarallo A., Heerman L. (1999) J. Appl. Electrochem. 29:585

    Article  CAS  Google Scholar 

  15. Fleischman M., Hill I.R., Sundholm G. (1983) J. Electroanal. Chem. 157:359

    Google Scholar 

  16. Yan M., Liu K., Jiang Z. (1996) J. Electroanal. Chem. 408:225

    Article  Google Scholar 

  17. Bolzan A.E., Iwasita T., Arvia A.J. (2003) J. Electroanal. Chem. 554–555:49

    Article  Google Scholar 

  18. Bolzan A.E., Piatti R.C.V., Salvarezza R.C., Arvia A.J. (2002) J. Appl. Electrochem. 32:611

    Article  CAS  Google Scholar 

  19. Veilleux B., Lafront A.-M., Ghali E., Roberge P.R. (2003) J. Appl. Electrochem. 33:1093

    Article  CAS  Google Scholar 

  20. Garcia G., Macagno V.A., Lacconi G.I. (2003) Electrochim. Acta. 48:1273

    Article  CAS  Google Scholar 

  21. Bolzan A.E., Piatti R.C.V., Arvia A.J. (2003) J. Electroanal. Chem. 552:19

    Article  CAS  Google Scholar 

  22. Subramanian A., Srinivasan K.N., John S., Vasudevan T. (2001) J. Appl. Electrochem. 31:35

    Article  CAS  Google Scholar 

  23. Renner R.F., Liddell K.C. (2002) J. Appl. Electrochem. 32:621

    Article  CAS  Google Scholar 

  24. Concise International Chemical Assessment Document 49, World Health Organization, Geneva, 2003

  25. Smyth M.R., Osteryoung J.G. (1977) Anal. Chem. 49:2310

    Article  CAS  Google Scholar 

  26. Rothmeier J., Neumann G., Stumpf C., Rabenstein A., Vogt C. (2001) J. Chromatogr. A. 934:129

    Article  Google Scholar 

  27. Polta T.Z., Johnson D.C. (1986) J. Electroanal. Chem. 209:159

    Article  CAS  Google Scholar 

  28. Chai L., Okido M., Wei W. (1999) Hydrometallurgy. 53:255

    Article  CAS  Google Scholar 

  29. Port S.N., Cere S., Schiffrin D.J. (1997) J. Electroanal. Chem. 432:215

    Article  CAS  Google Scholar 

  30. Mho S., Johnson D.C. (2001) J. Electroanal. Chem. 500:524

    Article  CAS  Google Scholar 

  31. Luo M.Z., Baldwin R.P. (1995) J. Electroanal. Chem. 387:87

    Article  Google Scholar 

  32. Kano K., Takagi K., Inone K., Ikeda T., Ueda T. (1996) J. Chromatogr. A. 721:53

    Article  CAS  Google Scholar 

  33. Marioli M., Kuwana T. (1992) Electrochim. Acta. 37(7):1187

    Article  CAS  Google Scholar 

  34. Luo P., Prabhu S.V., Baldwin R.P. (1990) Anal. Chem. 62:752

    Article  CAS  Google Scholar 

  35. Prablu V., Baldwin R.P. (1989) Anal. Chem. 61:852

    Article  Google Scholar 

  36. Nagy L., Nagy G., Hajos P. (2001) Sens. Actuators. B. 76:494

    Article  Google Scholar 

  37. Radovan C., Manea F. (2002) Chem. Bull. “Politehnica” Univ. 47(61):21

    Google Scholar 

  38. Jović V.D., Jovié B.M. (2003) J. Electroanal. Chem. 541:13

    Article  Google Scholar 

  39. Droog J.M.M., Alderliesten G.A., Alderliesten P.T., Bootsmag G.A. (1980) J. Electroanal. Chem. 111:61

    Article  CAS  Google Scholar 

  40. Droog J.M.M., Scheletner B. (1980) J. Electroanal. Chem. 112:387

    Article  CAS  Google Scholar 

  41. Cassela I.G., Contursi M., Desimoni E. (2002) Analyst. 127:647

    Article  Google Scholar 

  42. P.J. Vandeberg, J.L. Kavagoe and D.C. Johnson, Anal. Chim. Acta. 260 (1992) 1.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Manea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manea, F., Radovan, C. & Schoonman, J. Amperometric determination of thiourea in alkaline media on a copper oxide–copper electrode. J Appl Electrochem 36, 1075–1081 (2006). https://doi.org/10.1007/s10800-006-9152-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-006-9152-9

Keywords

Navigation