Advertisement

Journal of Applied Electrochemistry

, Volume 36, Issue 8, pp 919–929 | Cite as

Involvement of a metastable surface state in the electrocatalytic, electrodeposition and bath additive behaviour of copper in acid solution

  • L. D. BurkeEmail author
  • A. M. O’Connell
  • R. Sharna
  • C. A. Buckley
OriginalPaper

Abstract

Copper in aqueous sulphuric acid solution at room temperature displays a low level active (metastable) surface state redox transition well within the double layer region, at ca. −0.7±0.1 V (SMSE). The latter is an important feature of this electrode system as it apparently coincides with (a) the transition from activation to transport control in acid sulphate copper plating baths, (b) a major change in the inhibiting properties of several plating bath additives, and (c) the onset/termination potential of electrocatalytic processes, e.g. nitrate reduction, at copper in acid. The nature and influence of this active surface state behaviour, which is assumed to be relevant to Damascene copper plating, is discussed.

Keywords

bath additives copper in acid electrocatalysis electrodeposition metastable state 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This material is based on work supported by Science Foundation Ireland (SFI) under Grant No. 02/INI/1217. The award of postgraduate research studentships by Intel Ireland (AMO’C), SFI (RS) and the Irish Government (IRCSET scheme) (CAB) is acknowledged.

References

  1. 1.
    Andricacos P.C. (1999) The Electrochem. Soc. Interface 8:32Google Scholar
  2. 2.
    Andricacos P.C., Uzoh C., Dukovic J.O., Horkans J., Deligianni H. (1998) IBM J. Res. Develop. 42:567Google Scholar
  3. 3.
    Hussein M.A., He J. (2005) IEEE Trans. Semiconductor Manuf. 18:69CrossRefGoogle Scholar
  4. 4.
    Kang M., Gross M.E., Gerwirth A.A. (2003) J. Electrochem. Soc. 150C:292CrossRefGoogle Scholar
  5. 5.
    Moffat T.P., Wheeler D., Edelstein E.D., Josell D. (2005) IBM J. Res. Develop. 49:19CrossRefGoogle Scholar
  6. 6.
    Kang M., Gerwirth A. (2003) J. Electrochem. Soc. 150C:426CrossRefGoogle Scholar
  7. 7.
    Oniciu L., Muresan L. (1991) J. Appl. Electrochem. 21:565CrossRefGoogle Scholar
  8. 8.
    Stoychev D., Tsvetanov C. (1996) J. Appl. Electrochem. 26:741CrossRefGoogle Scholar
  9. 9.
    Healy J.P., Pletcher D. (1992) J. Electroanal. Chem. 338:155CrossRefGoogle Scholar
  10. 10.
    Kelly J.J., Tian C., West A.C. (1999) J. Electrochem. Soc. 146:2540CrossRefGoogle Scholar
  11. 11.
    Bonou L., Eyraud M., Denoyel R., Massiani Y. (2002) Electrochim. Acta 47:4139CrossRefGoogle Scholar
  12. 12.
    Behana E., Mendez P.F., Ortega R., Salgado L., Trejo G. (2004). Electrochim Acta 49:989CrossRefGoogle Scholar
  13. 13.
    Reed-Hill R.E., Abbaschian R. (1992) Physical Metallurgy Principles, 3rd edn. PWS – Kent Publishing Co., Boston pp 227–269Google Scholar
  14. 14.
    Buckley D.N., Ahmed S. (2003). Electrochem. Solid State Letts. 6:C33CrossRefGoogle Scholar
  15. 15.
    Atkins P.W. (1990) Physical Chemistry, 4th edn. Oxford University Press, OxfordGoogle Scholar
  16. 16.
    Burke L.D., Ahern A.J., O’Mullane A.P. (2002) Gold Bull. 35:3Google Scholar
  17. 17.
    Burke L.D. (2004) Gold Bull. 37:125Google Scholar
  18. 18.
    Ahern A.J., Nagle L.C., Burke L.D. (2002). J. Solid State Electrochem. 6:451CrossRefGoogle Scholar
  19. 19.
    Burke L.D., Kinsella L.M., O’Connell A.M. (2004). Russ. J. Electrochem. 40:1105CrossRefGoogle Scholar
  20. 20.
    Burke L.D., Naser N.N. (2005) J. Appl. Electrochem. 35:931CrossRefGoogle Scholar
  21. 21.
    Burke L.D., Collins J.A. (1999) J. Appl. Electrochem. 29:1427CrossRefGoogle Scholar
  22. 22.
    Burke L.D., Collins J.A., Murphy M.A. (1999). J. Solid State Electrochem. 4:34CrossRefGoogle Scholar
  23. 23.
    Kelly J.J., West A.C. (1998) J. Electrochem. Soc. 145:3472CrossRefGoogle Scholar
  24. 24.
    Gates B.C. (1992) Catalytic Chemistry. Wiley, New York, p 352Google Scholar
  25. 25.
    Wolfram T., Ellialtioglu S. (1980) In: Smith J.R. (eds). Theory of Chemisorption. Springer-Verlag, Berlin p 150Google Scholar
  26. 26.
    Lloyd L., Ridler D.E., Twigg M.V. (1989). In: Twigg M.V. (eds). Catalyst Handbook, 2nd edn. Wolf Publishing, London, p. 290Google Scholar
  27. 27.
    Schedel–Niedrig Th, Hävecker M., Knop-Gericke A., Schlögl R. (2002). Phys. Chem. Chem. Phys. 2:3473CrossRefGoogle Scholar
  28. 28.
    Kyriacou G., Anagnostopoulos A. (1992). J. Electroanal. Chem. 322:233CrossRefGoogle Scholar
  29. 29.
    Jermann B., Augustynski J. (1994) Electrochim. Acta 39:1891CrossRefGoogle Scholar
  30. 30.
    Pletcher D., Poorabedi Z. (1979). Electrochim. Acta 24:1253CrossRefGoogle Scholar
  31. 31.
    Albery W.J., Haggett B.G.D., Jones C.P., Prichard M.J., Svanberg L.R. (1985) J. Electroanal. Chem. 188:257CrossRefGoogle Scholar
  32. 32.
    Dima G.E., de C.A. A., Koper M.T.M. (2003) Electroanal. Chem. 554:15CrossRefGoogle Scholar
  33. 33.
    Nolen T.R. (1988) J. Electrochem. Soc. 135:29CCrossRefGoogle Scholar
  34. 34.
    Quickenden T.I., Xu Q. (1996). J. Electrochem. Soc. 143:1248CrossRefGoogle Scholar
  35. 35.
    Ertl G. (2000). In: Gates B.C., Knözinger H. (eds). Advances in Catalysis, vol 45. Academic Press, New York, p 49Google Scholar
  36. 36.
    Taylor H.S. (1925) Proc. Roy. Soc. Lond. A 108:105CrossRefGoogle Scholar
  37. 37.
    Somorjai G.A. (1977) In: Eley D.D., Pines H., Weisz P.B. (eds). Advances in Catalysis, vol 26. Academic Press, New York, pp 1–68Google Scholar
  38. 38.
    Kesmodel L.L., Falicov L.M. (1975). Solid State Commun 16:1201CrossRefGoogle Scholar
  39. 39.
    Henglein A. (1993) J. Phys. Chem. 97:5457CrossRefGoogle Scholar
  40. 40.
    Burke L.D. (1994) Electrochim. Acta 39:1841CrossRefGoogle Scholar
  41. 41.
    Pletcher D. (1984) J. Appl. Electrochem. 14:403CrossRefGoogle Scholar
  42. 42.
    Murray R.W. (1984) In: Bard A.J. (eds). Electroanalytical Chemistry, vol 13. Dekker, New York, pp. 191–368Google Scholar
  43. 43.
    J.O’M. Bockris, A.K.N. Reddy, M. Gamboa-Aldeco, Modern Electrochemistry, Vol 2A, 2nd edn. (Kluwer/Plenum, New York, 2000) pp. 1316–1340Google Scholar
  44. 44.
    Randler R.J., Kolb D.M., Ocko B.M., Robinson I.K. (2000) Surf. Sci. 447:187CrossRefGoogle Scholar
  45. 45.
    Mattson E., Bockris J.O’M. (1959) Trans. Faraday Soc. 55:1586CrossRefGoogle Scholar
  46. 46.
    Turner R.J., Johnson G.R. (1962) J. Electrochem. Soc. 109:798CrossRefGoogle Scholar
  47. 47.
    Farndon E.E., Walsh F.C., Campbell S.A. (1995) J. Appl. Electrochem. 25:574CrossRefGoogle Scholar
  48. 48.
    Alodan A., Smyrl W. (1998) Electrochim. Acta 44:299CrossRefGoogle Scholar
  49. 49.
    Szymaszek A., Biernat J., Pajdowski L. (1977) Electrochim. Acta 22:359CrossRefGoogle Scholar
  50. 50.
    Nagy Z., Blaudeau J.P., Hung N.C., Curtis L.A., Zurawski D.J. (1995) J. Electrochem. Soc. 142L:87CrossRefGoogle Scholar
  51. 51.
    Yokoi M., Konishi S., Hayashi T. (1984) Denki Kagaku 52:218Google Scholar
  52. 52.
    Healy J.P., Pletcher D., Goodenough M. (1992) J. Electroanal. Chem. 338:155CrossRefGoogle Scholar
  53. 53.
    Goldbach S., Messing W., Daenen T., Lapicque F. (1998) Elctrochim. Acta 44:323CrossRefGoogle Scholar
  54. 54.
    Jovic V.D., Jovic B.M. (2001) J. Serb. Chem. Soc. 66:935Google Scholar
  55. 55.
    Bonou L., Eyraud M., Denoyel R., Massiani Y. (2002) Electrochim. Acta 47:4139CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • L. D. Burke
    • 1
    Email author
  • A. M. O’Connell
    • 1
    • 2
  • R. Sharna
    • 1
  • C. A. Buckley
    • 1
  1. 1.Chemistry DepartmentUniversity College CorkCorkIreland
  2. 2.Intel Ireland LtdCollinstown Industrial Park, Leixlip, Co. KildareIreland

Personalised recommendations