Advertisement

Journal of Applied Electrochemistry

, Volume 36, Issue 9, pp 991–996 | Cite as

Numerical optimization of bipolar plates and gas diffusion layers for PEM fuel cells

  • S.A. GrigorievEmail author
  • A.A. Kalinnikov
  • V.N. Fateev
  • A.A. Wragg
Article

Abstract

This paper is devoted to the numerical optimization of the dimensions of channels and current transfer ribs of bipolar plates as well as the thickness and porosity of gas diffusion layers. A mathematical model of the transfer processes in a PEM fuel cell has been developed for this purpose. The results are compared with experimental data. Recommendations of the values of operating parameters and some design requirements to increase PEM fuel cell efficiency are suggested.

Keywords

bipolar plate gas diffusion layer mathematical modelling optimization PEM fuel cells 

Nomenclature (List of symbols)

dr

Width of current transfer rib (mm)

dc

Width of the gas channel (mm)

h

Gas diffusion layer thickness (mm)

ɛ

Gas diffusion layer porosity

n

Volumetric concentration of a reagent

no

Initial volumetric concentration of reagent

Do

Diffusion coefficient of a reagent (mm2 s−1)

D

Diffusion coefficient of a reagent in porous media (mm2 s−1)

i

Current density (A cm−2)

F

Faraday number (96487 C mol−1)

Uout

Output voltage of fuel cell (V)

φ

Potential (V)

ρx, ρy

Specific electrical conductivity of gas diffusion layer in directions x and y, respectively (S cm−1)

Eeq

Equilibrium potential (V)

Ref

Effective electrical resistance of membrane and electrocatalytic layer (Ο cm2)

io

Exchange current density (A cm−2)

p

Oxygen partial pressure (bar)

po

Reference oxygen pressure (bar)

α

Electron transfer coefficient

z

Number of electrons involved in the reaction

η

Overpotential (V)

R

Gas constant (8.3145 J K−1 mol−1)

T

Absolute temperature (K)

ρo

Specific electric conductivity of carbon (S cm−1)

t

Fuel cell temperature (°C)

Pair

Air pressure (bar)

PH2

Hydrogen pressure (bar)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pharoah J.G. (2005). J. Power Sources 144:77CrossRefGoogle Scholar
  2. 2.
    Li X., Sabir I. (2005). Int. J. Hydrogen Energy 30:359CrossRefGoogle Scholar
  3. 3.
    Jung H-M., Lee W-Y., Park J-S., Kim C-S. (2004). Int. J. Hydrogen Energy 29:945CrossRefGoogle Scholar
  4. 4.
    Yoon Y-G., Lee W-Y., Park G-G., Yang T-H., Kim C-S. (2005). Int. J. Hydrogen Energy 30:1363CrossRefGoogle Scholar
  5. 5.
    Jung H-M., Lee W-Y., Park J-S., Yang T-H., Kim C-S. (2004). Electrochim. Acta 50:709CrossRefGoogle Scholar
  6. 6.
    Grigorȁ9ev S.A., Alanakian Yu.R., Fateev V.N., Rusanov V.D. (2002). Doklady Phys. Chem. 382:31CrossRefGoogle Scholar
  7. 7.
    Grigorȁ9ev S.A., Kalinnikov A.A., Porembskii V.I., Baranov I.E., Borisova E.V., Fateev V.N. (2004). Russ. J. Electrochem. 40:1188CrossRefGoogle Scholar
  8. 8.
    Kulikovsky A.A. (2002). Numerical Methods Programming 3:150Google Scholar
  9. 9.
    Rowe A., Li X. (2001). J. Power Sources 102:82CrossRefGoogle Scholar
  10. 10.
    Siegel N.P., Ellis M.W., Nelson D.J., von Spakovsky M.R. (2004). J. Power Sources 128:173CrossRefGoogle Scholar
  11. 11.
    Hermann A., Chaudhuri T., Spagnol P. (2005). Int. J. Hydrogen Energy 30:1297CrossRefGoogle Scholar
  12. 12.
    Cooper J.S. (2004). J. Power Sources 129:152CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • S.A. Grigoriev
    • 1
    Email author
  • A.A. Kalinnikov
    • 1
  • V.N. Fateev
    • 1
  • A.A. Wragg
    • 2
  1. 1.Hydrogen Energy and Plasma Technology Institute of Russian Research Center “Kurchatov Institute”MoscowRussia
  2. 2.Department of EngineeringUniversity of ExeterExeterUK

Personalised recommendations