Skip to main content
Log in

Progress in the synthesis of carbon nanotube- and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis

  • Reviews in Applied Electrochemistry Number 60
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This paper reviews the literature on the synthesis of carbon nanotube- and nanofiber-supported Pt electrocatalysts for proton exchange membrane (PEM) fuel cell catalyst loading reduction through the improvement of catalyst utilization and activity, especially focusing on cathode nano-electrocatalyst preparation methods. The features of each synthetic method were also discussed based on the morphology of the synthesized catalysts. It is clear that synthesis methods play an important role in catalyst morphology, Pt utilization and catalytic activity. Though some remarkable progress has been made in nanotube- and nanofiber-supported Pt catalyst preparation techniques, the real breakthroughs have not yet been made in terms of cost-effectiveness, catalytic activity, durability and chemical/electrochemical stability. In order to make such electrocatalysts commercially feasible, cost-effective and innovative, catalyst synthesis methods are needed for Pt loading reduction and performance optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Larminie J., Dicks A., (2000). Fuel Cell Systems Explained. John Wiley & Sons, New York, pp. 61–108

    Google Scholar 

  2. Arita M., (2002) Fuel Cells 2: 10

    Article  CAS  Google Scholar 

  3. DOE FY 2002&2004 Annual Progress Reports

  4. L. Zhang, J. Zhang, D. Wilkinson and H. Wang, J. Power Sources, DOI: 10.1016/j.jpowsour.2005.05.069

  5. Sato N., (2003) Oyo Buturi 72: 857

    CAS  Google Scholar 

  6. Gasteiger H.A., Kocha S.S., Sompalli B., Wagner F.T., (2005) Appl. Catal. B: Environ. 56: 9

    Article  CAS  Google Scholar 

  7. Brandon N.P., Skinner S., Steele B.C.H., (2003) Annu. Rev. Mater. Res. 33: 183

    Article  CAS  Google Scholar 

  8. DOE FY 2000 Annual Progress Report

  9. C. Jaffray and G. Hards, in W. Vielstich and H.A. Gasteiger, Handbook of Fuel Cells – Fundamentals, Technology and Applications, Vol. 3, Chapter 41 (John Wiley & Sons, New York, 2003), pp. 509–513

  10. Kinoshita K., (1992) Electrochemical Oxygen Technology. John Wiley & Sons, New York, pp.19

    Google Scholar 

  11. Kordesch K., Simader G., (1996) Fuel Cells and their Applications. VCH, New York, pp. 3–93

    Google Scholar 

  12. Bernardi D.M., Verbrugge M.W., (1992). J. Electrochem. Soc. 139: 2477

    Article  CAS  Google Scholar 

  13. Toda T., Igarashi H., Uchiada H., Watanabe M., (1999) J. Electrochem. Soc. 146: 3750

    Article  CAS  Google Scholar 

  14. Ralph T.R., Hogarth M.P., (2002) Platinum Metals Rev. 46: 3

    CAS  Google Scholar 

  15. D. Thompsett, in W. Vielstich and H.A. Gasteiger (eds), Handbook of Fuel Cells – Fundamentals, Technology and Applications, Vol. 3, Chapter 37 (John Wiley & Sons, New York, 2003), pp. 467–480

  16. Savadogo O., Beck P., (1996) J. Electrochem. Soc. 143: 3842

    Article  CAS  Google Scholar 

  17. Shim J., Lee C.R., Lee H.K., Lee J.S., Cairns E.J., (2001) J. Power Sources 102: 172

    Article  CAS  Google Scholar 

  18. Ota K., Ishihara A., Mitsushima S., Lee K., Suzuki Y., Horibe N., Nakagawa T., Kamiya N., (2005) J. New. Mat. Electrochem. Systems 8: 25

    CAS  Google Scholar 

  19. Mukerjee S., Srinivasan S., (1993) J. Electroanal. Chem. 357: 201

    Article  CAS  Google Scholar 

  20. Tamizhman G., Capuano G.A., (1994) J. Electrochem. Soc. 141: 968

    Article  Google Scholar 

  21. T. Tada, in W. Vielstich and H.A. Gasteiger (eds), Handbook of Fuel Cells – Fundamentals, Technology and Applications, Vol. 3, Chapter 38 (John Wiley & Sons, New York, 2003), pp. 481–488

  22. T.V. Hughes and C.R. Chambers, US Patent 405,480 (1889)

  23. Iijima S., (1991) Nature 354: 56

    Article  CAS  Google Scholar 

  24. Dai H., (2002) Surface Sci. 500: 218

    Article  CAS  Google Scholar 

  25. Li W., Liang C., Zhou W., Qiu J., Zhou Z., Sun G., Xin Q., (2003) J. Phys. Chem. B 107: 6292

    Article  CAS  Google Scholar 

  26. Thess A., Lee R., Nikolaev P., Dai H., Petit P., Robet J., Xu C., Lee Y.H., Kim S.G., Rinzler A., Colbert D.T., Scuseria G., Tomanek D., Fischer J.E., Smalley R., (1996) Science 273: 483

    Article  CAS  Google Scholar 

  27. Serp P., Corrias M., Kalck P., (2003) Appl. Catal. A: Gen. 253: 337

    Article  CAS  Google Scholar 

  28. Thompson S.D., Jordan L.R., Forsyth M., (2001) Electrochim. Acta 46: 1657

    Article  CAS  Google Scholar 

  29. Matsumoto T., Komatsu T., Nakano H., Arai K., Nagashima Y., Yoo E., Yamazaki T., Kijima M., Shimizu H., Takasawa Y., Nakamura J., (2004) Catal. Today 90: 277

    Article  CAS  Google Scholar 

  30. Rodriguez N.M., (1993) J. Mater. Res. 8: 3233

    Article  CAS  Google Scholar 

  31. Raffaelle R.P., Landi B.J., Harris J.D., Bailey S.G., Hepp A.F., (2005) Mater. Sci. Eng. B 116: 233

    Article  Google Scholar 

  32. Endo M., Kim Y.A., Hayasi T., Nishimura K., Matusita T., Miyashita K., Dresselhaus M.S., (2001) Carbon 39: 1287

    Article  CAS  Google Scholar 

  33. Inagaki M., Kaneko K., Nishizawa T., (2004) Carbon 42: 1401

    Article  CAS  Google Scholar 

  34. Jong K.P.D., Geus J.W., (2000) Catal. Rev.-Sci. Eng. 42: 481

    Article  Google Scholar 

  35. Iijima S., (2002) Physica B 323: 1

    Article  CAS  Google Scholar 

  36. Li W., Liang C., Zhou W., Qiu J., Li H., Sun G., Xin Q., (2004) Carbon 42: 423

    Article  Google Scholar 

  37. Rajalakshmi N., Ryu H., Shaijumon M.M., Ramaprabhu S., (2005) J. Power Sources 140: 250

    Article  CAS  Google Scholar 

  38. Xing Y., (2004) J. Phys. Chem. B 108: 19255

    Article  CAS  Google Scholar 

  39. Liu Z., Lin X., Lee J.Y., Zhang W., Han M., Gan L.M., (2002) Langmuir 18: 4054

    Article  CAS  Google Scholar 

  40. Yu R., Chen L., Liu Q., Tan K.L., Ng S.C., Chan H.S.O., Xiu G.Q., Hor T.S.A., (1998) Chem. Mater. 10: 718

    Article  CAS  Google Scholar 

  41. Hirua H., Ebbesen T.W., Tanigaki K., (1995) Adv. Mater. 7: 275

    Article  Google Scholar 

  42. Ebbesen T.W., Hirua H., Bisher M.E., Treacy M.M.J., Shreeve-Keyer J.L., Haushalter R.C., (1996) Adv. Mater. 8 : 155

    Article  CAS  Google Scholar 

  43. Sun X., Li R., Villers D., Dodelet J.P., Desilets S., (2003) Chem. Phys. Lett. 379: 99

    Article  CAS  Google Scholar 

  44. Kinoshita K., (1990) J. Electrochem. Soc. 137:845

    Article  CAS  Google Scholar 

  45. Liu Z., Gan L.M., Hong L., Chen W., Lee J.Y., (2005) J. Power Sources 139: 73

    Article  CAS  Google Scholar 

  46. W.X. Chen, J.Y. Lee and Z. Liu, Chem. Commun. (2002) 2588

  47. Yang B., Lu Q., Wang Y., Zhuang L., Lu J., Liu P., (2003) Chem. Mater. 15: 3552

    Article  CAS  Google Scholar 

  48. Liu Z., Lee J.Y., Chen W., Han M., Gan L.M., (2004) Langmuir 20:181

    Article  CAS  Google Scholar 

  49. Chen W., Zhao J., Lee J.Y., Liu Z., (2005) Mater. Chem. Phys. 91: 124

    Article  CAS  Google Scholar 

  50. X. Li, W.X. Chen, J. Zhao, W. Xing and Z. D. Xu, Carbon, in press

  51. Yang J., Deivaraj T.C., Too H.P., Lee J.Y., (2004) Langmuir 20: 4241

    Article  CAS  Google Scholar 

  52. Thompson S.D., Jordan L.R., Shukla A.K., Forsyth M., (2001) J. Electroanal. Chem. 515: 61

    Article  CAS  Google Scholar 

  53. Kim H., Subramanian N.P., Popov B.N., (2004). J. Power Sources 138: 14

    Article  CAS  Google Scholar 

  54. Antoine O., Durand R., (2001) J. Electrochem. Solid-State Lett. 4: A55

    Article  CAS  Google Scholar 

  55. Taylor E.J., Anderson E.B., Vilambi N.R.K., (1992) J. Electrochem. Soc. 139: L45

    Article  CAS  Google Scholar 

  56. N.R.K. Vilambi, E.B. Andersion and E. J. Taylor, US Patent 5,084,144 (1992)

  57. Lee K., Ishihara A., Mitsushima S., Kamiya N., Ota K.-I., (2004) J. Electrochem. Soc. 151: A639

    Article  CAS  Google Scholar 

  58. Wang C., Waje M., Wang X., Tang J.M., Haddon R.C., Yan Y., (2004) Nano Lett. 4: 345

    Article  CAS  Google Scholar 

  59. He Z., Chen J., Liu D., Zhou H., Kuang Y., (2004) Diamond Relat. Mater. 13: 1764

    Article  CAS  Google Scholar 

  60. Guo D.J., Li H.L., (2004) J. Electroanal. Chem. 573: 197

    Article  CAS  Google Scholar 

  61. Mukerjee S., Srinivasan S., Appleby A.H., (1993) Electrochim. Acta 38: 1661

    Article  CAS  Google Scholar 

  62. Hirano S., Kim J., Srinivasan S., (1997) Electrochim. Acta 42: 1587

    Article  CAS  Google Scholar 

  63. Chen C.C., Chen C.F., Hsu C.H., Li I.H., (2005) Diamond Relat. Mater. 14: 770

    Article  CAS  Google Scholar 

  64. Sun C.L., Chen L.C., Su M.C., Hong L.S., Chyan O., Hsu C.Y., Chen K.H., Chang T.F., Chang L., (2005) Chem. Mater. 17: 3749

    Article  CAS  Google Scholar 

  65. S.D. Oh, B.K. So, S.H. Choi, A. Gopalan, K.P. Lee, K.R. Yoon and I.S. Choi, Mater. Lett. 59 (2005) 1121

  66. Lee C.L., Ju Y.C., Chou P.T., Huang Y.C., Kuo L.C., Oung J.C., (2005) Electrochem. Commun. 7: 453

    Article  CAS  Google Scholar 

  67. Lee C.L., Wan C.C., Wang Y.Y., (2001) Adv. Funct. Mater. 11: 344

    Article  CAS  Google Scholar 

  68. Yoshitake T., Shimakawa Y., Kuroshima S., Kimura H., Ichihashi T., Kudo Y., Kasuya D., Takahashi K., Kokai F., Yudasaka M., Iijima S., (2002) Physica B 323: 124

    Article  CAS  Google Scholar 

  69. http://www.nec.co.jp/press/ja/0108/3002.html

  70. Bessel C.A., Laubernds K., Rodriguez N.M., Baker R.T.K., (2001) J. Phys. Chem. B 105: 1115

    Article  CAS  Google Scholar 

  71. Zhu Y.A., Sui Zh.J., Zhao T.J., Dai Y.Ch., Cheng Zh.M., Yuan W.K., (2005) Carbon 43: 1694

    Article  CAS  Google Scholar 

  72. Ismagilov Z.R., Kerzhentsev M.A., Shikina N.V., Lisitsyn A.S., Okhlopkova L.B., Barnakov Ch.N., Sakashita M., Iijima T., Tadokoro K., (2005) Catalysis Today 102–103: 58

    Article  Google Scholar 

  73. Koyama T., (1972) Carbon 10: 757

    Article  CAS  Google Scholar 

  74. K. Sasaki, K. Shinya, S. Tanaka, A. Furukawa, K. Ando, T. Kuroki, H. Kusaba and Y. Teraoka, Nanostructuring of PEFC electrode catalysts using carbon nanofibers, Abstract of the 206th Electrochemical Society meeting, Honolulu, 3–8 October (2004) Abstract # 1912

  75. K. Sasaki, K. Shinya, S. Tanaka, A. Furukawa, K. Ando, T. Kuroki, H. Kusaba and Y. Teraoka, Nanostructuring of cathode catalysts for polymer electrolyte fuel cells, Proceeding of the 11th FCDIC Fuel Cell Symposium, Tokyo, Japan, 18–19 May (2003) pp. 239–242

  76. K. Shinya, K. Sasaki, H. Kusaba and Y. Teraoka, PEFC electrode catalysts supported on carbon nanofibers: nanostructure and catalytic properties, Proceeding of the 45th Battery Symposium in Japan, Kyoto, Japan, 27–29 November (2004), pp. 46–46

  77. A. Asami, S. Iinou, A. Ishihara, S. Mitsushima, N. Kamiya and K.I. Ota, Application of Pt/VGCF as cathode for PEFC, Proceeding of the 24th Annual Meeting of Hydrogen Energy Systems Society of Japan, Saitama, Japan, 10–11 December (2004) pp. 16–19

  78. Zhang L., Cheng B., Samulski E.T., (2004) Chem. Phys. Lett. 398: 505

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank the Institute for Fuel Cell Innovation, National Research Council Canada (NRC_IFCI) for its financial support. Discussions with Dr. Zhong-Sheng Liu and Dr. Dave Ghosh are deeply appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiujun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K., Zhang, J., Wang, H. et al. Progress in the synthesis of carbon nanotube- and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis. J Appl Electrochem 36, 507–522 (2006). https://doi.org/10.1007/s10800-006-9120-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-006-9120-4

Keywords

Navigation