Skip to main content
Log in

Mechanism of di(methyl)ether (DME) electrooxidation at platinum electrodes in acid medium

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrooxidation of DME was studied at a bulk platinum electrode. It was shown that the DME adsorption was a slow step in the overall oxidation reaction. The DME adsorption is potential dependent in the hydrogen region of platinum and independent in the double layer region. From low potential scan rate voltammetry and DME stripping experiments, it was shown that the DME oxidation mechanism occurred via several reaction paths. At low potentials, DME oxidation leads to the existence of a positive current plateau. “In situ” Infrared Reflectance Spectroscopy experiments were carried out to identify the intermediate and reaction products of DME adsorption and oxidation at different potentials. COL (linearly bonded CO), COB (bridge bonded CO), adsorbed COOH species and CO2 were detected. From these electrochemical and spectro-electrochemical results, it was proposed that some adsorbed DME was hydrolysed and directly oxidized to CO2 or HCOOH species and some partially blocked platinum sites at the surface forming Pt–CHO and/or Pt–CO. Then, as soon as platinum becomes able to activate water, a bifunctionnal mechanism occurs to form either HCOOH or CO2 again following two different reaction paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shukla A.K., Jackson C.L., Scott K. and Raman R.K. (2002). Electrochim. Acta 47: 3401

    Article  CAS  Google Scholar 

  2. Aricò A.S., Baglio V., Modica E., Di Blasi A. and Antonucci V.(2004). Electrochem. Comm. 6: 164

    Article  Google Scholar 

  3. Dillon R., Srinivasan S., Aricò A.S., Antonucci V.(2004). J. Power Sources 127: 112

    Article  CAS  Google Scholar 

  4. Gogel V., Frey T., Zhu Yongsheng, Friedrich K.A., Jörissen L. and Garche J.(2004). J. Power Sources 127: 172

    Article  CAS  Google Scholar 

  5. Vigier F., Coutanceau C., Perrard A., Belgsir E.M. and Lamy C.(2004). J. Appl. Electrochem. 34: 439

    Article  CAS  Google Scholar 

  6. Vigier F., Coutanceau C., Hahn F., Belgsir E.M. and Lamy C.(2004). J. Electroanal. Chem. 563: 81

    Article  CAS  Google Scholar 

  7. Y. Tsutsumi, T. Moriyama and S. Kajitani, in V. W. Wong (MIT) (Ed.), Proceeding of the 2000 Spring Technical Conference of The ASME Internal Combustion Engine Division, ICE Vol. 34–3 (2000), pp 58–63

  8. Müller J.T. and Urban P.M., Hölderich W.F., Colbow K.M., Zhang J., Wilkinson D.P.(2000). J. Electrochem. Soc. 147: 4058

    Article  Google Scholar 

  9. Tsutsumi Y., Nakano Y., Kajitani S. and Yamasita S.(2002). Electrochemistry 70: 984

    CAS  Google Scholar 

  10. Mench M.M., Chance H.M. and Wang C.Y.(2004). J. Electrochem. Soc. 151: A144

    Article  CAS  Google Scholar 

  11. Aricò A.S., Cretì P., Modica E., Monforte G., Baglio V. and Antonucci V.(2000). Electrochim. Acta. 45: 4319

    Article  Google Scholar 

  12. Coutanceau C., Rakotondrainibe A.F., Lima A., Garnier E., Pronier S., Léger J.-M. and Lamy C.(2004). J. Appl. Electrochem. 34: 61

    Article  CAS  Google Scholar 

  13. Kim Y.J., Choi W.C., Woo S.I. and Hong W.H.(2004). Electrochim. Acta 49: 3227

    Article  CAS  Google Scholar 

  14. Zhou W.J., Zhou Z.H., Song S.Q., Li W.Z., Sun G.Q., Tsiakaras P. and Xin Q.(2003). Appl. Catal. B: Environ. 46: 273

    Article  CAS  Google Scholar 

  15. Zhou W.J., Li W.Z., Song S.Q., Zhou Z.H., Jiang L.H., Sun G.Q., Xin Q., Poulianitis K., Kontou S. and Tsiakaras P.(2004). J. Power Sources 131: 217

    Article  CAS  Google Scholar 

  16. Bewick A., Kunimatsu K., Pons B., Pons J.W. and Russell J.W.(1984). J. Electroanal. Chem. 160: 47

    Article  CAS  Google Scholar 

  17. Iwasita T.(2002). Electrochim. Acta 47: 3663

    Article  CAS  Google Scholar 

  18. Watanabe M. and Motoo S.(1975). J. Electroanal. Chem. 60: 275

    Article  CAS  Google Scholar 

  19. Gasteiger H.A., Markovic N., Ross P.N. and Cairns E.J. (1994). J. Electrochem. Soc. 141: 1795

    Article  CAS  Google Scholar 

  20. Piersma B.J. and Gileadi E.(1966). In: Bockris JO’M. (eds), Modern Aspects of Electrochemistry, Vol. 4, Ch. 2. Butterworths, London, pp. 102

    Google Scholar 

  21. J.-M. Léger, PhD thesis (University of Poitiers, France, 1982).

  22. Coutanceau C., Croissant M.J., Napporn T. and Lamy C.(2000). Electrochim. Acta 46: 579

    Article  CAS  Google Scholar 

  23. Papoutsis A., Léger J.M. and Lamy C.(1987). J. Electroanal. Chem. 234: 315

    Article  CAS  Google Scholar 

  24. Kabbabi A., Faure R., Durand R., Beden B., Hahn F., Léger J.-M. and Lamy C.(1998). J. Electroanal. Chem. 444: 41

    Article  CAS  Google Scholar 

  25. J.Müller, P. Urban, R. Wezel, K.M. Colbow and J. Zhang, US Patent no US 6,777,116 B1, Aug. 17. 2004.

  26. Waszczuk P., Wieckowski A., Zelenay P., Gottesfeld S., Coutanceau C., Léger J.-M. and Lamy C.(2001). J. Electroanal. Chem. 511: 55

    Article  CAS  Google Scholar 

  27. Napporn W.T., Laborde H., Léger J.-M. and Lamy C.(1996). J. Electroanal. Chem. 404: 153

    Article  Google Scholar 

  28. Beden B., Lamy C., Bewick A. and Kunimatsu K.(1981). J. Electroanal. Chem. 121: 343

    CAS  Google Scholar 

  29. Kunimatsu K.(1982). J. Electroanal. Chem. 140: 205

    Article  CAS  Google Scholar 

  30. B. Beden, F. Hahn, S. Juanto, C. Lamy and J.-M. Léger, ␣J.␣Electroanal. Chem. 225 (1987)

  31. Rasch B. and Iwasita T.(1990). Electrochim. Acta 35: 989

    Article  CAS  Google Scholar 

  32. El Chbihi M., Takky D., Hahn F., Huser H., Léger J.-M. and Lamy C. (1999). J. Electroanal. Chem. 463: 63

    Article  Google Scholar 

  33. Asselin P., Soulard P., Alikhani M.E. and Perchard J.P. (1999). Chem. Phys. 249: 73

    Article  CAS  Google Scholar 

  34. Schriver-Mazzuoli L., Coanga J.M., Schriver A. and Ehrenfreund P.(2002). Vibrational Spectro 30: 245

    Article  CAS  Google Scholar 

  35. Iwasita T. and Pastor E.(1994). Electrochim. Acta 39: 531

    Article  CAS  Google Scholar 

  36. Chang S.C., Leung L.W. and Weaver M.J.(1990). J. Phys. Chem. 94: 6013

    Article  CAS  Google Scholar 

  37. Iwasita T., Rasch B., Cattaneo E. and Vielstich W.(1989). Electrochim. Acta 34: 1073

    Article  Google Scholar 

  38. Lamy C., Lima A., LeRhun V., Delime F., Coutanceau C. and Léger J.-M. (2002). J. Power Sources 105: 283

    Article  CAS  Google Scholar 

  39. Rice C., Tong Y.Y., Oldfield E., Wieckowski A., Hahn F., Gloaguen F., Léger J.-M. and Lamy C.(2000). J. Phys. Chem. B 104: 5803

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Coutanceau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kéranguéven, G., Coutanceau, C., Sibert, E. et al. Mechanism of di(methyl)ether (DME) electrooxidation at platinum electrodes in acid medium. J Appl Electrochem 36, 441–448 (2006). https://doi.org/10.1007/s10800-005-9095-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-9095-6

Keywords

Navigation