Skip to main content
Log in

Hardening effect induced by incorporation of SiC particles in nickel electrodeposits

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Pure Ni and nickel matrix composite electrocoatings containing micron- and nano-SiC particles (1 μm and 20 nm respectively) were produced under direct and pulse current conditions from an additive-free Watts type bath. The effect of the particle size, codeposition percentage of SiC and type of imposed current on the microhardness as well as on the microstructure of the electrodeposits were investigated. Ni/SiC composite deposits prepared under either direct or pulse current conditions exhibited a considerable strengthening effect with respect to pure Ni coatings. The improved hardness of composite coatings was associated to specific structural modifications of Ni crystallites provoked by the adsorption of H+ on the surface of SiC particles, thus leading to a (211) texture mode of Ni crystal growth. Pulse electrodeposition significantly improved the hardness of the Ni/SiC composite coatings, especially at low duty cycles, in which grain refinement and higher SiC incorporation (vol. %) was achieved. The enhanced hardness of Ni/nano-SiC deposits, as compared to Ni/micron-SiC composites, was attributed to the increasing values of the number density of embedded SiC particles in the nickel matrix with decreasing particle size. In addition, the observed hardening effects of the SiC particles might be associated to the different embedding mechanisms of the particles, which could be characterized as inter-crystalline for micron-SiC and partially intra-crystalline for nano-SiC particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fransaer J., Celis J.P., Roos J.R. (1993). Met. Finish. 91:97

    CAS  Google Scholar 

  2. Hovestad A., Janssen L.J.J. (1995). J. Appl. Electrochem 25: 519

    Article  CAS  Google Scholar 

  3. Musiani M. (2000). Electrochim. Acta 45:3397

    Article  CAS  Google Scholar 

  4. Orlovskaja L., Periene N., Kurtinaitiene M., Surviliene S. (1999) Surf. Coat. Technol 111:234

    Article  CAS  Google Scholar 

  5. Gyftou P., Pavlatou E.A., Spyrellis N., Hatzilyberis K.S. (2000) Trans. Inst. Met. Finish 78:223

    CAS  Google Scholar 

  6. Garcia I., Fransaer J., Celis J.-P. (2001)Surf. Coat. Technol 148:171

    Article  CAS  Google Scholar 

  7. Zimmerman A.F., Palumbo G., Aust K.T, Erb U. (2002) Mater. Sci. Eng. A 328:137

    Article  Google Scholar 

  8. Benea L., Bonora P.L., Borello A., Martelli S. (2002). Wear 249:995

    Article  Google Scholar 

  9. Garcia I., Conde A., Langelaan G., Fransaer J., Celis J.P. (2003) Corros. Sci. 45:1173

    Article  CAS  Google Scholar 

  10. Yeh S.H., Wan C.C. (1994) J. Appl. Electrochem 24:993

    Article  CAS  Google Scholar 

  11. Maurin G., Lavanant A. (1995) J. Appl. Electrochem. 25:1113

    Article  CAS  Google Scholar 

  12. Gyftou P., Stroumbouli M., Pavlatou E.A., Spyrellis N. (2002) Trans. Inst. Met. Finish 80:88

    CAS  Google Scholar 

  13. Zimmermann A.F., Clark D.G., Aust K.T., Erb U. (2002) Mater. Lett. 52:85

    Article  Google Scholar 

  14. Kim S.K., Yoo H.J. (1998) Surf. Coat. Technol. 108–109:564

    Article  Google Scholar 

  15. Wang S.-C., Wei W.-C.J., (2003) Mater. Chem. Phys. 78:574

    Article  CAS  Google Scholar 

  16. M.-D. Ger (2004) Mater. Chem. Phys. 87:67

    Article  CAS  Google Scholar 

  17. Hou K.H., Ger M.D., Wang L.M., Ke S.T. (2002) Wear 253:994

    Article  CAS  Google Scholar 

  18. Shrestha N.K., Masuko M., Saji T. (2003) Wear 254:555

    CAS  Google Scholar 

  19. Nowak P., Socha R.P., Kaisheva M., Fransaer J., Celis J.-P., Stoinov Z. (2000) J. Appl. Electrochem. 30:429

    Article  CAS  Google Scholar 

  20. Socha R.P., Nowak P., Laajalehto K., Väyrynen J. (2004) Coll. Surf. A 235:45

    Article  CAS  Google Scholar 

  21. Kaisheva M., Fransaer J. (2004) J. Electrochem. Soc. 151:C89

    Article  CAS  Google Scholar 

  22. Hu F., Chan K.C. (2004) Appl. Surf. Sci. 233:163

    Article  CAS  Google Scholar 

  23. Kollia C., Spyrellis N., Amblard J., Froment M., Froment M., Maurin G. (1990) J. Appl. Electrochem. 20:1025

    Article  CAS  Google Scholar 

  24. El-Sherik A.M., Erb U., Page J. (1996) Surf. Coat. Technol. 88:70

    Article  Google Scholar 

  25. Tóth-Kádár E., Bakonyi I., Pogány L., Cziráki Á (1996) Surf. Coat. Technol. 88:57

    Article  Google Scholar 

  26. Qu N.S., Zhu D., Chan K.C., Lei W.N. (2003) Surf. Coat. Technol 168:123

    Article  CAS  Google Scholar 

  27. Boyer H.E., (eds) (1987) “Hardness Testing”. ASM International, Metals Park. OH

    Google Scholar 

  28. Mishra R., Basu B., Balasubramaniam R. (2004) Mater. Sci. Eng. A 373:370

    Article  Google Scholar 

  29. Amblard J., Froment M., Maurin G., Spyrellis N. (1981) J. Microsc. Spectrosc. Electron. 6:311

    CAS  Google Scholar 

  30. Amblard J., Costavaras Th., Hugot-Le Goff A., Spyrellis N. (1977) Oberfläche-Surf. 1:18

    Google Scholar 

  31. Denise F., Leidheiser H. (1953) J. Electrochem. Soc. 100:490

    Article  CAS  Google Scholar 

  32. Evans D.J. (1958) Trans. Far. Soc. 54:1086

    Article  CAS  Google Scholar 

  33. Knödler A. (1966) Metalloberfläche 20:52

    Google Scholar 

  34. Lin C.S., Huang K.C. (2004) J. Appl. Electrochem. 34:1013

    Article  CAS  Google Scholar 

  35. Amblard J., Froment M., Spyrellis N. (1977) Surf. Technol. 5:205

    Article  CAS  Google Scholar 

  36. Psarrou S., Kollia C., Spyrellis N. (1999) Galvanotecnica e Nuove Finiture 4:224

    Google Scholar 

  37. Gyftou P., Pavlatou E.A., Spyrellis N. (2001) Galvanotecnica e Nuove Finiture 11:23

    CAS  Google Scholar 

Download references

Acknowledgement

Part of this work was funded by the European Commission (project InMan, contract BRPR-CT98–0788).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Spyrellis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlatou, E., Stroumbouli, M., Gyftou, P. et al. Hardening effect induced by incorporation of SiC particles in nickel electrodeposits. J Appl Electrochem 36, 385–394 (2006). https://doi.org/10.1007/s10800-005-9082-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-9082-y

Key words:

Navigation