Skip to main content
Log in

Theoretical investigation of steady state multiplicities in solid oxide fuel cells*

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The nonlinear steady state behaviour of solid oxide fuel cells (SOFCs) is investigated. It is found that the temperature dependence of the electrolyte conductivity has a very strong influence on the occurrence of multiple steady states, instabilities and the formation of hot spots. Two correlations from the literature for the electrolyte conductivity are studied in a lumped model and in a 1D spatially distributed model of a SOFC. The cases of galvanostatic operation, potentiostatic operation, and operation under a constant ohmic load are considered. The lumped model possesses a unique steady state under galvanostatic operation and up to three steady states under potentiostatic operation or under constant load. In the distributed model, three steady states may coexist under galvanostatic operation and up to five under potentiostatic operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B :

width of cell (m)

c P :

molar heat capacity (J mol−1 K−1)

C SE :

coefficient in Equation (24) (Ω−1 m−1)

c t :

total gas concentration (mol m−3)

d :

thickness of electrodes (m)

D eff :

diffusion coefficient (m2 s−1)

E :

activation energy (J mol−1)

E SE :

coefficient in Equation (24) (J mol−1)

F :

Faraday constant (96485 C mol−1)

Δ R G :

free enthalpy of reaction at T ref (J mol−1)

H :

height of gas channels (m)

Δ R H :

heat of reaction (J mol−1)

i :

current density (A m−2)

I :

total cell current (A)

\(\dot{n}\) :

molar flow (mol s−1)

p :

pressure (Pa)

R:

ohmic resistance (Ω)

\({\mathbb R}\) :

gas constant (8.314 J mol−1 K−1)

Δ R S :

entropy of reaction at T ref (J mol−1 K−1)

t :

time (s)

U Cell :

cell voltage (V)

y j :

molar fraction

z :

space coordinate (m)

α:

heat transfer coefficient (W m−2 K−1)

β1/2 :

coefficients in Equation (23)

γ:

pre-exponential kinetic factor (A m−2)

η:

overpotential (V)

θ:

charge transfer coefficient

λ:

heat conductivity of the solid (W m−1 K−1)

ν:

stoichiometric coefficient

ρ:

resistivity (Ω m)

ρS :

density of the solid (kg m−3)

Φ:

electrical potential (V)

A:

anode

C:

cathode

E:

electrolyte

S:

solid

References

  1. Hudson J., Tsotsis T. (1994). Chemical Engineering Science 49:1493

    Article  CAS  Google Scholar 

  2. Pismen L. (1980). Chemical Engineering Science 35:1950

    Article  CAS  Google Scholar 

  3. Koper M., Sluyters J. (1994). Journal of Electroanalytical Chemistry 371:149

    Article  CAS  Google Scholar 

  4. Krischer K., Mazouz N., Flätgen G. (2000). Journal of Physical Chemistry B 104:7545

    Article  CAS  Google Scholar 

  5. Mazouz N., Krischer K. (2000). Journal of Physical Chemistry B 104:6081

    Article  CAS  Google Scholar 

  6. Purwins H.-G., Radehaus C., Dirksmeyer T., Dohmen R., Schmeling R., Willebrand H. (1987). Physics Letters A 125:92

    Article  Google Scholar 

  7. Hüpper G., E. Schöll G., Reggiani L. (1989). Solid-State Electronics 32:1787

    Article  Google Scholar 

  8. Niedernostheide F.-J. ed. (1995). ‘Nonlinear Dynamics and Pattern Formation in Semiconductors and Devices’. Springer, Berlin

    Google Scholar 

  9. Koper M., Schmidt T., Marković N., Ross P. (2001). Journal of Physical Chemistry B 105:8381

    Article  CAS  Google Scholar 

  10. 10. Varela H., Krischer K. (2001). Catalysis Today 70:411

    Article  CAS  Google Scholar 

  11. Lee J., Eickes C., Eiswirth M., Ertl G. (2002). Electrochimica Acta 47:2297

    Article  CAS  Google Scholar 

  12. Zhang J., Datta R. (2004). Electrochemical and Solid State Letters 7:A37

    Article  CAS  Google Scholar 

  13. Zhang J., Fehribach J., Datta R. (2004). Journal of the Electrochemical Society 151:A689

    Article  CAS  Google Scholar 

  14. Benziger J., Chia E., Karnas E., Moxley J., Teuscher C., Kevrekidis I. (2004). AIChE Journal 50:1889

    Article  CAS  Google Scholar 

  15. Chia E., Benziger J., Kevrekidis I. (2004). AIChE Journal 50:2320

    Article  CAS  Google Scholar 

  16. Moxley J., Tulyani S., Benziger J. (2003). Chemical Engineering Science 58:4705

    Article  CAS  Google Scholar 

  17. Mangold M., Krasnyk M., Sundmacher K. (2004). Chemical Engineering Science 59:4869

    Article  CAS  Google Scholar 

  18. Costamagna P., Honegger K., (1998). Journal of the Electrochemical Society 145:3995

    Article  CAS  Google Scholar 

  19. B. Munder, Y. Ye, L. Rihko-Struckmann and K. Sundmacher: Submitted to Catalysis Today (2005)

  20. Liljenroth F. (1918). Chemical and Metallurgical Engineering 19:287

    CAS  Google Scholar 

  21. van Heerden C. (1958). Chemical Engineering Science 7:133

    Article  Google Scholar 

  22. Mangold M., Kienle A., Mohl K., Gilles E. (2000). Chemical Engineering Science 55:441

    Article  CAS  Google Scholar 

  23. Kolios G., Frauhammer J., Eigenberger G. (2000). Chemical Engineering Science 55:5945

    Article  CAS  Google Scholar 

  24. Luss D. (1997). Industrial & Engineering Chemistry Research 36:2931

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dipl.-Ing. (FH) Richard Hanke and Dipl.-Ing. Barbara Munder for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Mangold.

Additional information

Paper originally given at the CHISA Congress, Prague, August 2004.

Appendices

Appendix A. Model equations of the spatially distributed model

  • Anode and cathode gas channels:

    • Component material balances:

      $$ {\partial\over \partial t}\left(y_j^{A/C} c_t^{A/C}\right)= \mp{1\over H^{A/C} B}{\partial\dot{n}_j^{A/C}\over \partial z}+{\nu_j^{A/C}\over H^{A/C}}{i\over 2F} $$
      (6)
      $$y_j^A(0,t)=y_{j,in}^A(t),\quad y_j^C(L,t) = y_{j,in}^C(t) $$
      (7)

      (j=H2, H2O on anode side, and j=N2, O2 on cathode side)

    • Total material balance:

      $$ {\partial c_t^{A/C}\over \partial t}=\mp{1\over H^{A/C}B}{ \partial\dot{n}^{A/C}\over {\partial z}}+{1\over H^{A/C}} \sum_{j}\nu_j^{A/C}{i\over 2F} $$
      (8)
      $$ \dot{n}^A(0,t)=\dot{n}_{in}^A(t),\quad\dot{n}^C(L,t)=\dot{n}_{in}^C(t) $$
      (9)
    • Temperature equation on anode side

      $$ \eqalign{c_t^A c_P^A {\partial T^A\over \partial t}=&-{\dot{n}^A\over H^A B}c_P^A {\partial T^A\over \partial z}+{i\over 2F} {c_{P,{\rm H_2O}}\over H^A}\left( T^S - T^A \right)\cr &+{\alpha\over H^A}\left(T^S-T^A\right)} $$
      (10)
      $$ T^A(0,t)=T_{in}^A(t) $$
      (11)
    • Temperature equation on cathode side

      $$ c_t^C c_P^C {\partial T^C\over \partial t}={\dot{n}^C\over H^C B} c_P^C {\partial T^C\over \partial z}+{\alpha\over H^C} \left(T^S-T^C\right) $$
      (12)
      $$ T^C(L,t)=T_{in}^C(t) $$
      (13)
    • Specific molar heat capacity:

      $$ c_P^{A/C}=\sum_{j}y_j^{A/C} c_{P,j} $$
      (14)
    • Thermal equation of state:

      $$ c_t^{A/C}={p\over \mathbb{R} T^{A/C}} $$
      (15)
  • Solid phase:

    • - Component material balances:

      $$ 0=D_{eff}^{A/C} c_t {y_j^{A/C}-y_j^S\over d^{A/C}}+\nu_j^{A/C}{i\over 2F} $$
      (16)
    • Anodic reaction kinetics:

      $$ i=\gamma^A y_{{\rm H}_2}^S y_{{\rm H_2O}}^S \hbox{exp}\left(- {E^A\over \mathbb{R} T^S}\right) \left\{\hbox{exp}\left(\theta_a^A{F\over \mathbb{R} T^S}\eta^A \right)-\hbox{exp}\left( -\theta_c^A{F\over \mathbb{R} T^S}\eta^A \right) \right\} $$
      (17)
    • Cathodic reaction kinetics:

      $$ i=\gamma^C {y_{{\rm O}_2}^S}^{0.25}\hbox{ exp}\left(- {E^C\over \mathbb{R}T^S}\right) \left\{\hbox{exp}\left( \theta_a^C{F\over \mathbb{R} T^S}\eta^C \right)-\hbox{exp}\left( -\theta_c^C{F\over \mathbb{R}T^S}\eta^C \right)\right\} $$
      (18)
    • Charge balances in the electrodes:

      $$ {\partial\over \partial z}\left({d^{A/C}\over \rho^{A/C}}{\partial \Phi^{A/C} \over \partial z}\right)=\pm i $$
      (19)
      $$ \Phi^A(0,t)=0, \quad {Bd^C\over \rho^C}\left.{\partial\Phi^C\over \partial z}\right|_{0,t}=I, \quad \left.{\partial\Phi^A\over \partial z}\right|_{L,t}= \left.{\partial\Phi^C\over \partial z}\right|_{L,t}=0 $$
      (20)
    • Voltage drop in the electrolyte:

      $$ \eqalign{ U^{\rm Cell}&=\Phi^C(0,t)-\Phi^A(0,t)\cr &=U^0(T^S)-\eta^A-\eta^C-\rho^E(T^S)d^E i} $$
      (21)
    • Open circuit voltage:

      $$ U^0(T^S)=-{1\over 2F}\Bigg(\Delta_R G-\Delta_R S (T^S - T_{ref}) +\mathbb{R}T^S \hbox{ln}{y_{{\rm H_2O}}^A\over y_{{\rm H}_2}^A {y_{{\rm O}_2}^C}^{0.5}}\Bigg) $$
      (22)
    • Electrical conductivity of the electrolyte:

      $$ \hbox{Variant I}:\quad\rho^E={1\over \beta_1}\hbox{exp}\left( {\beta_2\over T^S}\right) $$
      (23)
      $$ \hbox{Variant II}:\quad\rho^E={T^S\over C^{SE}}\hbox{exp}\left( {E^{SE}\over \mathbb{R}T^S}\right) $$
      (24)
    • Temperature equation for the solid phase:

      $$ \eqalign{\left(d^A + d^E + d^C \right) \left(\rho c_P\right)^S {\partial T^S\over \partial t}=&\left({(-\Delta_R H)\over 2F}- \left(\Phi^C - \Phi^A \right) \right) i\cr &+{d^A\over \rho^A} \left({\partial\Phi^A\over\partial z}\right)^2+ {d^C\over \rho^C}\left({\partial\Phi^C\over \partial z}\right)^2+\left(d^A + d^E + d^C \right)\lambda {\partial^2 T^S\over \partial z^2}\cr &+\left(\alpha+{i\over 2F}c_{P,{\rm H}_2}\right)\left(T^A - T^S \right)\cr &+\left(\alpha+{i\over 4F}c_{P,{\rm O}_2}\right)\left(T^C - T^S \right)} $$
      (25)
      $$ -\uplambda\left.{\partial T^S\over \partial z}\right|_{0,t}=\alpha\left(T_{\rm amb}-T^S(0,t)\right) $$
      (26)
      $$ \uplambda\left.{\partial T^S\over \partial z}\right|_{L,t}=\alpha \left(T_{\rm amb}-T^S(L,t)\right) $$
      (27)
    • Depending on the mode of operation, one of the following three equations is used for describing the external electrical circuit:

    • Case (1): galvanostatic operation

      $$ I={\rm const.} $$
      (28)
    • Case (2): potentiostatic operation

      $$ U^{\rm Cell}={\rm const.} $$
      (29)
    • Case (3): operation with an external ohmic load

      $$ U^{\rm Cell}=R I $$
      (30)

Appendix B. Model equations of the lumped model

  • Anodic reaction kinetics:

    $$ {I\over LB}= \upgamma^A y_{{\rm H}_2}^S y_{{\rm H_2O}}^S\hbox{exp}\left(- {E^A\over \mathbb{R}T^S}\right) \left\{\hbox{ exp}\left( \theta_a^A{F\over \mathbb{R}T^S}\eta^A\right)-\hbox{exp}\left( -\theta_c^A{F\over \mathbb{R}T^S}\eta^A \right) \right\} $$
    (31)
  • Cathodic reaction kinetics:

    $$ {I\over LB}= \gamma^C {y_{{\rm O}_2}^S}^{0.25} \hbox{exp}\left(- {E^C\over \mathbb{R}T^S}\right) \left\{\exp\left(\theta_a^C{F\over \mathbb{R}T^S}\eta^C \right)-\hbox{exp} \left(-\theta_c^C{F\over \mathbb{R}T^S}\eta^C \right)\right\} $$
    (32)
  • Voltage drop in the electrolyte:

    $$ U^{\rm Cell}=\Phi^C-\Phi^A=U^0(T^S)-\eta^A-\eta^C- \rho^E(T^S)d^E {I\over LB} $$
    (33)
  • Temperature equation for the solid phase:

    $$ \eqalign{(d^A + d^E + d^C)(\rho c_P)^S {d T^S\over dt}=&\left({(-\Delta_R H)\over 2F}- \left(\Phi^C-\Phi^A\right)\right){I\over LB}\cr &+\left(\upalpha+{c_{P,{\rm H}_2}\over 2F}{I\over LB}\right) \left(T^A - T^S \right)\cr &+\left(\upalpha+{c_{P,{\rm O}_2}\over 4F}{I\over LB}\right) \left(T^C - T^S \right)} $$
    (34)
  • External load described by Equations (28), (29), or (30)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mangold, M., Krasnyk, M. & Sundmacher, K. Theoretical investigation of steady state multiplicities in solid oxide fuel cells* . J Appl Electrochem 36, 265–275 (2006). https://doi.org/10.1007/s10800-005-9080-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-9080-0

Key words:

Navigation