Skip to main content

Weight loss, polarization, electrochemical impedance spectroscopy, SEM and EDX studies of the corrosion inhibition of copper in aerated NaCl solutions

Abstract

This work reports results of weight loss, potentiodynamic polarization and impedance measurements on the corrosion inhibition of copper in aerated non-stirred 3% NaCl solutions in the temperature range 15–65 °C using sodium oleate (SO) as an anionic surfactant inhibitor. These studies have shown that SO is a very good ”green”, mixed-type inhibitor. The inhibition process was attributed to the formation of an adsorbed film on the metal surface that protects the metal against corrosive agents. Scanning electron microscopy (SEM) and energy dispersion X-ray (EDX) observations of the electrode surface confirmed the existence of such an adsorbed film. The inhibition efficiency increases with increasing surfactant concentration and time of immersion, while it decreases with solution temperature. Maximum inhibition efficiency of the surfactant is observed at concentrations around its critical micellar concentration (CMC). The potential of zero charge (pzc) of copper was studied by ac impedance, and the mechanism of adsorption is discussed. The sigmoidal shape of the adsorption isotherm confirms the applicability of Frumkin’s equation to describe the adsorption process. Thermodynamic functions for the adsorption process were determined.

This is a preview of subscription content, access via your institution.

References

  1. Bacarella A.L., Griess J.C. (1973). J. Electrochem. Soc., 120: 459

    Article  CAS  Google Scholar 

  2. W.H. Smyrl, in B.E. Conway, E. Yeager and R.E. White, (Eds), ‘Comprehensive Treatise of Electrochemistry’, Vol. 4, J.O’M. Bockris, (Plenum Press, New York, 1981), pp. 97–149.

  3. Barcia O.E., Mattos O.R., Pebere N., Tribollet B. (1993). J. Electrochem. Soc. 140: 2825

    Article  CAS  Google Scholar 

  4. Deslouis C., Tribollet B., Mengoli G., Musiani M.M. (1988). J. Appl. Electrochem. 18: 374

    Article  CAS  Google Scholar 

  5. Benedetti A.V., Sumodjo P.T.A., Nobe K., Cabot P.L., Proud W.G. (1995). Electrochim. Acta 40: 2657

    Article  CAS  Google Scholar 

  6. Zhou G., Shao H., Loo B.H. (1997) aa. J. Electroanal. Chem. 421: 129

    Article  CAS  Google Scholar 

  7. Crundwell F.K. (1992). Electrochim. Acta 37: 2101

    Article  Google Scholar 

  8. Lee H.P., Nobe K. (1986). J. Electrochem. Soc. 133: 2035

    Article  CAS  Google Scholar 

  9. Fiaud C. (1995). 8th Eur. Symp. on Corrosion Inhibitors, Ann. Univ. Ferrara 2: 929

    Google Scholar 

  10. Gasparac R., Martin C.R., Stupnisek-Lisac E. (2000). J. Electrochem. Soc. 147: 548

    Article  CAS  Google Scholar 

  11. Stupnisek-Lisac E., Gazivoda A., Madzarac M. (2002). Electrochim. Acta 47: 4189

    Article  CAS  Google Scholar 

  12. Otmacic H., Stupnisek-Lisac E. (2003). Electrochim. Acta, 48: 985

    Article  CAS  Google Scholar 

  13. F. Mansfeld and Y. Wang, in ‘Corrosion 95’, NACE, Paper No. 41, 1995.

  14. Ma H., Chen S., Zhao S., Liu X., Liu D., Li D. (2001). J. Electrochem. Soc. 148: B482

    Article  CAS  Google Scholar 

  15. G. Trabanelli in F. Mansfeld (Ed.), ‘Corrosion Mechanisms’, (Marcel Dekkar, Inc., New York, 1987), p. 119.

  16. Luo H., Guan Y.C., Han K.N. (1998). Corrosion 54: 619

    Article  CAS  Google Scholar 

  17. C.A. Miller and S. Qutubuddin, in H.-F, Eike and C.D. Parfitt (Eds), Interfacial Phenomena in polar Media, ’Surfactant Science Series’, Vol. 21, (Marcel Dekker, Inc., New York 1987), p. 166.

  18. Ma H., Chen S., Yin B., Zhao S., Liu X. (2003). Corros. Sci. 45: 867

    Article  CAS  Google Scholar 

  19. Abd El-Rehim S.S., Hassan H.H., Amin M.A. (2001). Mat. Chem. & Phys. 70: 64

    Article  CAS  Google Scholar 

  20. Abd El-Rehim S.S., Hassan H.H., Amin M.A. (2002). Mat. Chem. & Phys. 78: 337

    Article  Google Scholar 

  21. Abd El-Rehim S.S., Hassan H.H., Amin M.A. (2004). Corros. Sci. 46: 5–25

    Article  CAS  Google Scholar 

  22. Tarasova N.S., Khachaturyan M.A. and Nikolaev L.A., (1984). Russ. J. Phys. Chem. 58:628

    Google Scholar 

  23. Boukamp B.A., (1990). Equivalent Circuit. Princeton Applied Research Corporation, Princeton, N J

    Google Scholar 

  24. Zhao T. and Mu G., (1999). Corros. Sci. 41:1937

    Article  CAS  Google Scholar 

  25. M.J. Rosen, in ’Surfactants and Interfacial Phenomena’, (Wiley, New York, 1978), pp. 1–301.

  26. Hassan H.H., (2001). Appl. Surf. Sci., 174:201

    Article  CAS  Google Scholar 

  27. Bentiss F., Lagrence M., Traisnel M. and Hornez J.C., (1999). Corros. Sci. 41:789

    Article  CAS  Google Scholar 

  28. Wu X., Ma H., Chen S., Xu Z. and Sui A., (1999). J. Electrochem. Soc. 146:1847

    Article  CAS  Google Scholar 

  29. (a) B.A. Boukamamp, Solid State Ionics, 20 (1980) 31; (b) International Report CT 89/214/128, University of Twente, Eindhoven, The Netherlands (1989).

  30. Moretti G., Guidi F. and Grion G., (2003). Corros. Sci. 46:387

    Article  CAS  Google Scholar 

  31. J.O’M. Bockris, A.K.N. Reddy, in J.O’M. Bockris, B.E. Conway, E. Yeager and R.E. White (Eds), ’Modern Electrochemistry’, Vol. 2, (Plenum Press, New York, 1970), p. 708.

  32. Damaskin B.B., Petrii O.A. and Batraktov B., (1971). Adsorption of Organic Compounds on Electrodes. Plenum Press, New York

    Google Scholar 

  33. Langmuir I., (1917). J. Am. Chem. Soc. 39:1848

    Article  CAS  Google Scholar 

  34. Alberty R. and Silbey R., (1997). Physical Chemistry. Wiley, New York, p. 845

    Google Scholar 

  35. Bockris J.O’M. and Khan S.U.M., (1993). Surface Electrochemistry: A Molecular Level Approach. Plenum Press, New York

    Google Scholar 

  36. Schapinik J.W., Oudeman M., Leu K.W. and Helle J.N. (1960). Trans. Farad. Soc. 56:415

    Article  Google Scholar 

  37. Frumkin A.N., (1925). Z. Phys. Chem. 116:466

    CAS  Google Scholar 

  38. Ikeda O., Jimbo H. and Tamura H., (1982). J. Electroanal. Chem. 137:127

    Article  CAS  Google Scholar 

  39. J. Hill de Boer, ‘The Dynamical Character of Adsorption’, 2nd edn., (Clarendon Press, Oxford, UK, 1986).

  40. Dhar H., Conway B. and Joshi K., (1973). Electrochim. Acta 18:789

    Article  CAS  Google Scholar 

  41. Kamis E., Mellucci I., Lantanision R.M. and El-Ashry E.S.H. (1991). Corrosion 47:677

    Google Scholar 

  42. D. Do, ‘Adsorption Analysis: Equilibria and Kinetics’, (Imperial College Press, 1998), pp. 10–60.

  43. Conway B., (1965). Principles of Electrode Processes. The Ronald Press Company, New York, pp. 78–85

    Google Scholar 

  44. Martinez S., (2003). Mat. Chem. & Phys. 77:97

    Article  CAS  Google Scholar 

  45. Durnie W., De Marco R., Kinsella B. and Jefferson A., (1999). J. Electrochem. Soc. 146:1751

    Article  CAS  Google Scholar 

  46. Martinez S. and Stern I., (2002). Appl. Surf. Sci. 199:83

    Article  CAS  Google Scholar 

  47. Lampinen M.J. and Fomino M., (1993). J. Electrochem. Soc. 140:3537

    Article  CAS  Google Scholar 

  48. Ishibashi M., Itoh M., Nishihara H. and Aramaki K., (1996). Electrochim. Acta 41:241

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed A. Amin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Amin, M.A. Weight loss, polarization, electrochemical impedance spectroscopy, SEM and EDX studies of the corrosion inhibition of copper in aerated NaCl solutions. J Appl Electrochem 36, 215–226 (2006). https://doi.org/10.1007/s10800-005-9055-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-9055-1

Key words:

  • anionic surfactant
  • adsorption
  • copper
  • corrosion inhibition
  • EIS
  • NaCl solution