Journal of Applied Electrochemistry

, Volume 35, Issue 12, pp 1253–1264 | Cite as

Electrochemical promotion of the oxidation of propane on Pt/YSZ and Rh/YSZ catalyst-electrodes

Article

Abstract

The effect of electrochemical promotion (EP) or non-faradaic electrochemical modification of catalytic activity (NEMCA) was studied in the catalytic reaction of the total oxidation of propane on Pt and Rh films deposited on Y2O3-stabilized-ZrO2 (or YSZ), an O2− conductor, in the temperature range 420–520 °C. In the case of Pt/YSZ and for oxygen to propane ratios lower than the stoichiometric ratio it was found that the rate of propane oxidation could be reversibly enhanced by application of both positive and negative overpotentials (“inverted volcano” behavior), by up to a factor of 1350 and 1130, respectively. The induced rate increase Δr exceeded the corresponding electrochemically controlled rate I/2F of O2− transfer through the solid electrolyte, resulting in absolute values of the apparent faradaic efficiency Λ=Δr/(I/2F) up to 2330. The Rh/YSZ system exhibited similar EP behavior. Abrupt changes in the oxidation state of the rhodium catalyst, accompanied by changes in the catalytic rate, were observed by changing the O2 to propane ratio and catalyst potential. The highest rate increases, by up to a factor of 6, were observed for positive overpotentials with corresponding absolute values of faradaic efficiency Λ up to 830. Rate increases by up to a factor of 1.7 were observed for negative overpotentials. The observed EP behavior is explained by taking into account the mechanism of the reaction and the effect of catalyst potential on the binding strength of chemisorbed reactants and intermediates and on the oxidative state of the catalyst surface.

Keywords

electrochemical promotion NEMCA effect platinum propane combustion propane oxidation rhodium YSZ yttria-stabilized-zirconia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors thank the European Social Fund (ESF), Operational Program for Educational and Vocational Training II (EPEAEK II) and particularly the Program IRAKLEITOS, for financially supporting this work. They also thank Dr V. Drakopoulos, Institute of Chemical Engineering and High Temperature Chemical Processes (ICE-HT/FORTH) for the scanning electron microscopy (SEM) characterization of the catalyst-electrodes.

References

  1. 1.
    Pritchard J., (1990) . Nature 343: 592CrossRefGoogle Scholar
  2. 2.
    Vayenas C.G., Bebelis S., Ladas S., (1990) . Nature 343: 625CrossRefGoogle Scholar
  3. 3.
    Vayenas C.G., Bebelis S.I., Neophytides S., (1988) . J. Phys. Chem. 92: 5083CrossRefGoogle Scholar
  4. 4.
    Vayenas C.G., Jaksic M.M., Bebelis S., Neophytides S.G., (1996) The Electrochemical Activation of Catalytic Reactions. In: Bockris J. O’M., Conway B.E., White E. (eds) Modern Aspects of Electrochemistry Vol 29. Plenum, New York, pp. 57-202Google Scholar
  5. 5.
    Vayenas C.G., Bebelis S., Pliangos C., Brosda S., and Tsiplakides D., (2001) Electrochemical Activation of Catalysis. Kluwer Academic Publishers/Plenum Press, New YorkGoogle Scholar
  6. 6.
    Hubbard C.P., Otto K., Gandhi H.S., and Ng K.Y.S., (1993) . J. Catal. 139: 268CrossRefGoogle Scholar
  7. 7.
    Hinz A., Skoglundh M., Fridell E., and Andersson A., (2001) . J. Catal. 201: 247CrossRefGoogle Scholar
  8. 8.
    Aryafar M., and Zaera F., (1997) . Catal. Lett. 48: 173CrossRefGoogle Scholar
  9. 9.
    Burch R., Halpin E., Hayes M., Ruth K., and Sullivan J.A., (1998) . Appl. Catal. B 19: 199CrossRefGoogle Scholar
  10. 10.
    Wilson K., Hardacre C., and Lambert R.M., (1995) . J. Phys. Chem. 99: 13755CrossRefGoogle Scholar
  11. 11.
    Yazawa Y., Takagi N., Yoshida H., Komai S., Satsuma A., Tanaka T., Yoshida S., and Hattori T., (2002) . Appl. Catal. A 223: 103CrossRefGoogle Scholar
  12. 12.
    Yazawa Y., Yoshida H., and Hattori T., (2002) . Appl. Catal. A 237: 139CrossRefGoogle Scholar
  13. 13.
    Yazawa Y., Kagi N., Komai S., Satsuma A., Murakami Y., and Hattori T., (2001) . Catal. Lett. 72: 157CrossRefGoogle Scholar
  14. 14.
    Yazawa Y., Yoshida H., Komai S., and Hattori T., (2002) . Appl. Catal. A 233: 113CrossRefGoogle Scholar
  15. 15.
    Tsiakaras P., and Vayenas C.G., (1993) . J. Catal. 140: 53CrossRefGoogle Scholar
  16. 16.
    Frantzis A.D., Bebelis S., and Vayenas C.G., (2000) . Solid State Ionics 136-137: 863CrossRefGoogle Scholar
  17. 17.
    Kaloyannis A., and Vayenas C.G., (1997) . J. Catal. 171: 148CrossRefGoogle Scholar
  18. 18.
    Vernoux P., Gaillard F., Bultel L., Siebert E., and Primet M., (2002) . J. Catal. 208: 412CrossRefGoogle Scholar
  19. 19.
    Bebelis S., and Vayenas C.G., (1989) . J. Catal. 118: 125CrossRefGoogle Scholar
  20. 20.
    Yentekakis I.V., and Bebelis S., (1992) . J. Catal. 137: 278CrossRefGoogle Scholar
  21. 21.
    Pliangos C., Yentekakis I.V., Verykios X.E., and Vayenas C.G., (1995) . J. Catal. 154: 124CrossRefGoogle Scholar
  22. 22.
    Vayenas C.G., Brosda S., and Pliangos C., (2001) . J. Catal. 203: 329CrossRefGoogle Scholar
  23. 23.
    Brosda S., and Vayenas C.G., (2002) . J. Catal. 208: 38CrossRefGoogle Scholar
  24. 24.
    Fóti G., Bolzonella I., Bachelin D., and Comninellis Ch., (2004) . J. Appl. Electrochem. 34: 9CrossRefGoogle Scholar
  25. 25.
    Riekert L., (1981) . Ber. Bunsenges. Phys. Chem. 85: 297Google Scholar
  26. 26.
    Wüthrich R., Baranova E.A., Bleuler H., and Comninellis Ch., (2004) . Elec. Commun. 6: 1199CrossRefGoogle Scholar
  27. 27.
    Peuckert M., (1985) . J. Phys. Chem. 89: 2481CrossRefGoogle Scholar
  28. 28.
    Baranova E.A., Fóti G., and Comninellis Ch., (2004) . Elec. Commun. 6: 389CrossRefGoogle Scholar
  29. 29.
    Kiskinova M.P., (1992) Poisoning and Promotion in Catalysis Based on Surface Science Concept and Experiments. In: Delmon B., and Yates J.T. (eds) Studies in Surface Science and Catalysis Vol 70. Elsevier B.V., AmsterdamGoogle Scholar
  30. 30.
    Nicole J., Tsiplakides D., Wodiunig S., and Comninellis Ch., (1997) . J. Electrochem. Soc. 144: L312CrossRefGoogle Scholar
  31. 31.
    Hlavathy Z., and Tétényi P., (1998) . Surf. Sci. 410: 39CrossRefGoogle Scholar
  32. 32.
    Bultel L., Roux C., Siebert E., Vernoux P., and Gaillard F., (2004) . Solid State Ionics 166: 183CrossRefGoogle Scholar
  33. 33.
    Burch R., Crittle D.J., and Hayes M.J., (1999) . Catal. Today 47: 229CrossRefGoogle Scholar
  34. 34.
    Garetto T.F., Rincón E. and Apesteguía C.R., (2004) . Appl. Catal. B 48: 167CrossRefGoogle Scholar
  35. 35.
    Kellog G.L., (1986) . Surf. Sci. 171: 359CrossRefGoogle Scholar
  36. 36.
    Oh S.H., Carpenter J.E., (1983) . J. Catal. 80: 472CrossRefGoogle Scholar
  37. 37.
    Logan A.D., Datye A.K., Houston J.E., (1991) . Surf. Sci. 245: 280CrossRefGoogle Scholar
  38. 38.
    Peuckert M., Bonzel H.P., (1984) . Surf. Sci. 145: 239CrossRefGoogle Scholar
  39. 39.
    Yoshida H., , Yazawa Y., Hattori T., (2003) . Catal. Today 87: 19CrossRefGoogle Scholar
  40. 40.
    Burch R., Watling T.C., (1997) . J. Catal. 169: 45CrossRefGoogle Scholar
  41. 41.
    Pliangos C., Yentekakis I.V., Ladas S., Vayenas C.G., (1996) J. Catal. 159: 189CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of PatrasPatrasGreece

Personalised recommendations