Skip to main content

Advertisement

Log in

Metastability and electrocatalytic activity of ruthenium dioxide cathodes used in water electrolysis cells

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Ruthenium dioxide-coated titanium electrodes when used as cathodes in water electrolysis cells are metastable systems which display high catalytic activity and unexpected stability. At the potentials involved the oxide films clearly should undergo reduction; the barrier to the latter process seems to arise due to hydroxylation of the outer layers of the thermally prepared oxide; the reduction of hydrous oxide films in general is inhibited by the intervention (as the primary reduction product) of a high energy state of the metal. The catalysis of the hydrogen gas evolution reaction at the oxide/solution interface is attributed to the involvement of a metastable cyclic redox mediator system involving multivalent Ru(OH) x surface species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L.D. Burke (2004) Gold Bull. 37 125 Occurrence Handle1:CAS:528:DC%2BD2cXnt1emsLk%3D

    CAS  Google Scholar 

  2. L.D. Burke A.M. O’Connell A.P. O’Mullane (2003) J. Appl. Electrochem. 33 1125 Occurrence Handle10.1023/B:JACH.0000003755.89540.da Occurrence Handle1:CAS:528:DC%2BD3sXptVSlsr8%3D

    Article  CAS  Google Scholar 

  3. L.D. Burke J.M. Moran P.F. Nugent (2003) J. Solid State Electrochem. 7 529 Occurrence Handle10.1007/s10008-003-0359-y Occurrence Handle1:CAS:528:DC%2BD3sXnsFGrsLY%3D

    Article  CAS  Google Scholar 

  4. M.J. Jaycock G.D. Parfitt (1985) Chemistry of Interfaces John Wiley and Sons New York 136–141

    Google Scholar 

  5. A.A. Kornyshev and M. Sumetskii, in W.J. Lorenz and W. Plieth (Eds), ‘Electrochemical Nanotechnology’, Wiley-VCH, New York, (1998), pp. 45–55

  6. L.D. Burke L.M. Kinsella A.M. O’Connell (2004) Russ. J. Electrochem. 40 1105 Occurrence Handle10.1023/B:RUEL.0000048641.28024.0d Occurrence Handle1:CAS:528:DC%2BD2cXpvFWqsr4%3D

    Article  CAS  Google Scholar 

  7. L.D. Burke P.F. Nugent (1998) Gold Bull. 31 39 Occurrence Handle1:CAS:528:DyaK1MXlvVSlsg%3D%3D

    CAS  Google Scholar 

  8. L.D. Burke J.A. Collins M.A. Murphy (1999) J. Solid State Electrochem. 4 34 Occurrence Handle10.1007/s100080050189 Occurrence Handle1:CAS:528:DC%2BD3cXitFehs7g%3D

    Article  CAS  Google Scholar 

  9. L.D. Burke, M.E.G. Lyons, in R.E. White, J.O’M. Bockris and B.E. Conway (Ed.) ‘Modern Aspects of Electrochemistry’, No. 18, Plenum, New York, (1986), pp. 169–248

  10. M. Pourbaix (1966) Atlas of Electrochemical Equilibria in Aqueous Solutions Pergamon Press Oxford

    Google Scholar 

  11. L.D. Burke M.A. Murphy (2001) J. Solid State Electrochem. 5 43 Occurrence Handle10.1007/s100089900095 Occurrence Handle1:CAS:528:DC%2BD3MXhvVKksbc%3D

    Article  CAS  Google Scholar 

  12. L.D. Burke A.J. Ahern (2001) J. Solid State Electrochem. 5 553 Occurrence Handle10.1007/s100080000185 Occurrence Handle1:CAS:528:DC%2BD3MXotlSht7s%3D

    Article  CAS  Google Scholar 

  13. L.D. Burke D.T. Buckley (1994) J. Electroanal. Chem. 366 239 Occurrence Handle10.1016/0022-0728(93)03260-V Occurrence Handle1:CAS:528:DyaK2cXjtV2ksr8%3D

    Article  CAS  Google Scholar 

  14. L.D. Burke, N.S. Naser and B.A. Ahern, to be published

  15. M. Kleijn H.P. Van Leeuwen (1988) J. Electroanal. Chem. 247 235 Occurrence Handle10.1016/0022-0728(88)80145-1

    Article  Google Scholar 

  16. S. Ardizzone G. Fregonara S. Trasatti (1989) J. Electroanal. Chem. 266 191 Occurrence Handle10.1016/0022-0728(89)80228-1 Occurrence Handle1:CAS:528:DyaL1MXlsVartLs%3D

    Article  CAS  Google Scholar 

  17. J.F.C. Boodts S. Trasatti (1989) J. Appl. Electrochem. 19 255 Occurrence Handle10.1007/BF01062309 Occurrence Handle1:CAS:528:DyaL1MXit1Wgt7s%3D

    Article  CAS  Google Scholar 

  18. A. Cornell D. Simonsson (1993) J. Electrochem. Soc. 140 3123 Occurrence Handle1:CAS:528:DyaK2cXhtF2htLo%3D

    CAS  Google Scholar 

  19. I.M. Kodintsev S. Trasatti (1994) Electrochim. Acta 39 1803 Occurrence Handle10.1016/0013-4686(94)85168-9 Occurrence Handle1:CAS:528:DyaK2cXls1GrtLo%3D

    Article  CAS  Google Scholar 

  20. L. Chen D. Guay A. Lasia (1996) J. Electrochem. Soc. 143 3576 Occurrence Handle1:CAS:528:DyaK28XnsVCmtLg%3D

    CAS  Google Scholar 

  21. M. Blouin D. Guay (1997) J. Electrochem. Soc. 144 573 Occurrence Handle1:CAS:528:DyaK2sXhslaqtb4%3D

    CAS  Google Scholar 

  22. A.C. Tavares S. Trasatti (2000) Electrochim. Acta 45 4195 Occurrence Handle10.1016/S0013-4686(00)00546-6 Occurrence Handle1:CAS:528:DC%2BD3cXnsF2ksrk%3D

    Article  CAS  Google Scholar 

  23. B. Børresen G. Hagen R. Tunold (2002) Electrochim. Acta 47 1819 Occurrence Handle10.1016/S0013-4686(02)00005-1

    Article  Google Scholar 

  24. D. Rochefort P. Dabo D. Guay P.M.A. Sherwood (2003) Electrochim. Acta 48 4245 Occurrence Handle10.1016/S0013-4686(03)00611-X Occurrence Handle1:CAS:528:DC%2BD3sXoslOisLg%3D

    Article  CAS  Google Scholar 

  25. T.E. Lister Y.V. Tolmachev Y. Chu W.G. Cullen H. You R. Yonco Z. Nagy (2003) J. Electroanal. Chem. 554 IssueID5 71 Occurrence Handle10.1016/S0022-0728(03)00048-2

    Article  Google Scholar 

  26. B.E. Conway (1991) J. Electrochem. Soc. 138 1539 Occurrence Handle1:CAS:528:DyaK3MXkslGhsLw%3D

    CAS  Google Scholar 

  27. B.E. Conway (1999) Electrochemical Supercapacitors Plenum Press New York

    Google Scholar 

  28. X.M. Liu X.G. Zhang (2004) Electrochim. Acta 49 229 Occurrence Handle10.1016/j.electacta.2003.08.005 Occurrence Handle1:CAS:528:DC%2BD3sXptFGltrg%3D

    Article  CAS  Google Scholar 

  29. W. Sugimoto T. Kizaki K. Yokoshima Y. Murakami Y. Takusa (2004) Electrochim. Acta 49 313 Occurrence Handle10.1016/j.electacta.2003.08.013 Occurrence Handle1:CAS:528:DC%2BD3sXptFGlt7s%3D

    Article  CAS  Google Scholar 

  30. C. Iwakura N. Furukawa M. Tanaka (1992) Electrochim. Acta 37 757 Occurrence Handle10.1016/0013-4686(92)80081-V Occurrence Handle1:CAS:528:DyaK38XhvVent74%3D

    Article  CAS  Google Scholar 

  31. T.-C. Wen C.-C. Hu (1992) J. Electrochem. Soc. 139 158

    Google Scholar 

  32. E. Veggetti I.M. Kodinstev S. Trasatti (1992) J. Electroanal. Chem. 339 225 Occurrence Handle10.1016/0022-0728(92)80456-E

    Article  Google Scholar 

  33. N. Krstajic S. Trasatti (1995) J. Electrochem. Soc. 142 2675 Occurrence Handle1:CAS:528:DyaK2MXnsVCktr8%3D

    CAS  Google Scholar 

  34. L.D. Burke O.J. Murphy J.F. O’Neill S. Srinivasan (1977) J.C.S. Faraday 73 1659 Occurrence Handle10.1039/f19777301659 Occurrence Handle1:CAS:528:DyaE1cXps1Ghtg%3D%3D

    Article  CAS  Google Scholar 

  35. L.D. Burke A.P. O’Mullane (2000) J. Solid State Electrochem. 4 285 Occurrence Handle10.1007/s100080000127 Occurrence Handle1:CAS:528:DC%2BD3cXjsl2ju7g%3D

    Article  CAS  Google Scholar 

  36. L.D. Burke J.F. Healy (1981) J. Electroanal. Chem. 124 327 Occurrence Handle10.1016/0368-1874(81)87133-X Occurrence Handle1:CAS:528:DyaL3MXlt1aktbg%3D

    Article  CAS  Google Scholar 

  37. U. Müller (1993) ‘Inorganic Structural Chemistry’ Wiley New York

    Google Scholar 

  38. D.D. Wagman, W.H. Evans, V.B. Parker, I. Halow, S.M. Bailey and R.H. Schumm, ‘Selected Values of Chemical Thermodynamic Properties, NBS Technical Note 270-4’, (Nat. Bur. Stand., Washington, D.C. 1969) p. 94

  39. L.D. Burke J.F. O’Neill (1979) J. Electroanal. Chem. 101 341 Occurrence Handle10.1016/0368-1874(79)87121-X Occurrence Handle1:CAS:528:DyaE1MXlvVeqt7w%3D

    Article  CAS  Google Scholar 

  40. E.R. Kötz S. Stucki (1987) J. Appl. Electrochem. 17 1190 Occurrence Handle10.1007/BF01023602

    Article  Google Scholar 

  41. C. Chabanier E. Irisson D. Guay J.F. Pelletier M. Sulton L.B. Lurio (2002) Electrochem. Solid-State Lett. 5 E40 Occurrence Handle10.1149/1.1485806 Occurrence Handle1:CAS:528:DC%2BD38XksleksLY%3D

    Article  CAS  Google Scholar 

  42. L.D. Burke D.P. Whelan (1979) J. Electroanal. Chem. 103 197 Occurrence Handle10.1016/0368-1874(79)87220-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Declan Burke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burke, L.D., Naser, N.S. Metastability and electrocatalytic activity of ruthenium dioxide cathodes used in water electrolysis cells. J Appl Electrochem 35, 931–938 (2005). https://doi.org/10.1007/s10800-005-5290-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-5290-8

Key words

Navigation