Skip to main content
Log in

The function of vinylene carbonate as a thermal additive to electrolyte in lithium batteries

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The role of vinylene carbonate (VC) as a thermal additive to electrolytes in lithium ion batteries is studied in two aspects: the protection of liquid electrolyte species and the thermal stability of the solid electrolyte interphase (SEI) formed from VC on graphite electrodes at elevated temperatures. The nuclear magnetic resonance (NMR) spectra indicate that VC can not protect LiPF6 salt from thermal decomposition. However, the function of VC on SEI can be observed via impedance and electron spectroscopy for chemical analysis (ESCA). These results clearly show VC-induced SEI comprises polymeric species and is sufficiently stable to resist thermal damage. It has been confirmed that VC can suppress the formation of resistive LiF, and thus reduce the interfacial resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M. Andersson K. Edström (2001) J. Electrochem. Soc. 148 A1100 Occurrence Handle10.1149/1.1397771 Occurrence Handle1:CAS:528:DC%2BD3MXnsl2gu7s%3D

    Article  CAS  Google Scholar 

  2. A.M. Andersson K. Edström N. Rao A. Wendsjö (1999) J. Power Sources 81–82 286 Occurrence Handle10.1016/S0378-7753(99)00202-5

    Article  Google Scholar 

  3. J.I. Yamaki H. Takatsuji T. Kawamura M. Egashira (2002) Solid State Ionics 148 241 Occurrence Handle1:CAS:528:DC%2BD38XktVWgtLY%3D

    CAS  Google Scholar 

  4. U.V. Sacken E. Nodwell A. Sundher J.R. Dahn (1995) J. Power Sources 54 240

    Google Scholar 

  5. F. Joho P. Novák M.E. Spahr (2002) J. Electrochem. Soc. 149 A1020 Occurrence Handle1:CAS:528:DC%2BD38Xls1Slur4%3D

    CAS  Google Scholar 

  6. A.D. Pasquier F. Disma T. Bowmer A.S. Gozdz G. Amatucci J.M. Tarascon (1998) J. Electrochem. Soc. 145 472

    Google Scholar 

  7. N. Katayama T. Kawamura Y. Baba J.I. Yamaki (2002) J. Power Sources 109 321 Occurrence Handle1:CAS:528:DC%2BD38Xktlaqsrk%3D

    CAS  Google Scholar 

  8. M.N. Richard J.R. Dahn (1999) J. Electrochem. Soc. 146 2068 Occurrence Handle1:CAS:528:DyaK1MXktVCmtbY%3D

    CAS  Google Scholar 

  9. J. Jiang J.R. Dahn (2004) Electrochem. Commun. 6 39 Occurrence Handle1:CAS:528:DC%2BD3sXovFOisrw%3D

    CAS  Google Scholar 

  10. D.D. MacNeil D. Larcher J.R. Dahn (1999) J. Elecrochem. Soc. 146 3596 Occurrence Handle1:CAS:528:DyaK1MXmvVOmsbg%3D

    CAS  Google Scholar 

  11. S.E. Sloop J.K. Pugh S. Wang J.B. Kerr K. Kinoshita (2001) Electrochem. Solid-State Lett. 4 A42 Occurrence Handle1:CAS:528:DC%2BD3MXisFalsrg%3D

    CAS  Google Scholar 

  12. H.H. Lee C.C. Wan Y.Y. Wang (2004) J. Elecrochem. Soc. 151 A542 Occurrence Handle1:CAS:528:DC%2BD2cXitFSlsrw%3D

    CAS  Google Scholar 

  13. X. Zhang P.N. Ross SuffixJr. R. Kostecki F. Kong S. Sloop J.B. Kerr K. Striebel E.J. Cairns F. McLarnon (2001) J. Elecrochem. Soc. 148 A463 Occurrence Handle1:CAS:528:DC%2BD3MXjs1Wku74%3D

    CAS  Google Scholar 

  14. K. Araki N. Sato (2003) J. Power Sources 124 124 Occurrence Handle1:CAS:528:DC%2BD3sXmvF2ltr0%3D

    CAS  Google Scholar 

  15. R. Oesten U. Heider M. Schmidt (2002) Solid State Ionics 148 391 Occurrence Handle1:CAS:528:DC%2BD38XktVWgurg%3D

    CAS  Google Scholar 

  16. M. Contestabile M. Morselli R. Paraventi R.J. Neat (2003) J. Power Sources 119–121 943

    Google Scholar 

  17. S.S. Zhang K. Xu T.R. Jow (2002) Electrochem. Solid-State Lett. 5 A206 Occurrence Handle1:CAS:528:DC%2BD38Xls1SmtLg%3D

    CAS  Google Scholar 

  18. J. Jiang J.R. Dahn (2003) Electrochem. Solid-State Lett. 6 A180 Occurrence Handle1:CAS:528:DC%2BD3sXlvVWltL4%3D

    CAS  Google Scholar 

  19. B. Simon and J.P. Boeuve US Patent No. 5,626,981 (1997)

  20. O. Matsuoka A. Hiwara T. Omi M. Toriida T. Hayashi C. Tanaka Y. Saito T. Ishida H. Tan S.S. Ono S. Yamamoto (2002) J. Power Sources 108 128 Occurrence Handle1:CAS:528:DC%2BD38XjslaqtL0%3D

    CAS  Google Scholar 

  21. K.C. Möller H.J. Santner W. Kern S. Yamaguchi J.O. Besenhard M. Winter (2003) J. Power Sources 119–121 561

    Google Scholar 

  22. S.K. Jeong M. Inaba R. Mogi Y. Iriyama T. Abe Z. Ogumi (2001) Langmuir 17 8281 Occurrence Handle1:CAS:528:DC%2BD3MXos12isL4%3D

    CAS  Google Scholar 

  23. X. Zhang R. Kostecki T.J. Richardson J.K. Pugh P.N. Ross SuffixJr. (2001) J. Elecrochem. Soc. 148 A1341 Occurrence Handle1:CAS:528:DC%2BD3MXptF2qt7g%3D

    CAS  Google Scholar 

  24. E. Fluck and G. Heckmann, in J.G. Verkade and K.D. Quin (Eds), ‘Ch. 2 in Phosphorous-31 NMR Spectroscopy in Stereochemical Analysis – Organic Compounds and Metal Complexes’, (Wiley-VCH, Weinheim, 1987)

  25. R.J. Abraham J. Fisher L. Loftus (1987) Introduction to NMR spectroscopy EditionNumber2 John Wiley & Sons Essex 1

    Google Scholar 

  26. Spectral Data Base System for Organics Compounds (SDBS), www.aist.go.jp/ RIDDB/SDBS/menu-e.html

  27. D. Aurbach K. Gamolsky B. Markovsky Y. Gofer M. Schmidt U. Heider (2002) Eelectrochim. Acta 47 1423 Occurrence Handle1:CAS:528:DC%2BD38XhsV2lsLc%3D

    CAS  Google Scholar 

  28. A. Schechter D. Aurbach (1999) Langmuir 15 3334 Occurrence Handle1:CAS:528:DyaK1MXitVGlsLg%3D

    CAS  Google Scholar 

  29. D. Aurbach I. Weissman A. Schechter (1996) Langmuir 12 3991 Occurrence Handle1:CAS:528:DyaK28XktlWmsLg%3D

    CAS  Google Scholar 

  30. H. Ota K. Shima M. Ue J. Yamaki (2004) Electrochim. Acta 49 565 Occurrence Handle1:CAS:528:DC%2BD3sXpslCgsb8%3D

    CAS  Google Scholar 

  31. Y. Wang P.B. Balbuena (2002) J. Phys. Chem. B 106 4486 Occurrence Handle1:CAS:528:DC%2BD38XisVeksL4%3D

    CAS  Google Scholar 

  32. L. Ding Y. Li Y. Li Y. Liang J. Huang (2001) European Polymer J. 37 2453 Occurrence Handle1:CAS:528:DC%2BD3MXntVWks7g%3D

    CAS  Google Scholar 

  33. H. Ota Y. Sakata Y. Otake K. Shima M. Ue J. Yamaki (2004) J. Elecrochem. Soc. 151 A1778 Occurrence Handle1:CAS:528:DC%2BD2cXpsVClur8%3D

    CAS  Google Scholar 

  34. H. Ota Y. Sakata A. Inoue S. Yamahuchi (2004) J. Elecrochem. Soc. 151 A1659 Occurrence Handle1:CAS:528:DC%2BD2cXotlelt78%3D

    CAS  Google Scholar 

  35. D. Aurbach J.S. Gnanaraj W. Geissler M. Schmidt (2004) J. Elecrochem. Soc. 151 A23 Occurrence Handle1:CAS:528:DC%2BD3sXpvFOmtbw%3D

    CAS  Google Scholar 

  36. M. Herstedt A.M. Andersson H. Rensmo H. Sigbahn K. Edströem (2004) Electrochim. Acta 49 4939 Occurrence Handle1:CAS:528:DC%2BD2cXms1Cnsb4%3D

    CAS  Google Scholar 

Download references

Acknowledgements

The technical support of Materials Reasearch Laboratories of Industrial Technology Reasearch Institute (Taiwan) is acknowledged. The ESCA analysis done by Ms. Hsiang-Ping Wen of the Instrumentation Center in National Taiwan University is especially appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Chao Wan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, HH., Wang, YY., Wan, CC. et al. The function of vinylene carbonate as a thermal additive to electrolyte in lithium batteries. J Appl Electrochem 35, 615–623 (2005). https://doi.org/10.1007/s10800-005-2700-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-2700-x

Key words

Navigation