Skip to main content
Log in

Removal and recovery of copper via a galvanic cementation system part II: batch-recycle reactor

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This paper describes a batch-recycle galvanic reactor, operated in the flow-by configuration, for the removal of copper from dilute industrial effluents. A three-dimensional cathode, 80 ppi reticulated vitreous carbon, was used for this purpose. Mass transfer studies show that the average mass transfer coefficient was proportional to the Reynolds number, Ref, where f=0.68, which was independent of the concentration of reactant species under the experimental conditions. A comparison of the performance between a single-pass and a batch-recycle reactor was also conducted with an initial copper concentration of 10 mg l−1, 100 mg l−1 and 500 mg l−1. A 500 ml feed of 74.2 mg l−1 of copper in electroplating rinse water with a low conductivity of 1.2 mS cm−1 was reduced to less than 1.0 mg l−1 in 150 min at a flow rate of 500 ml min−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Pletcher (1984) Industrial Electrochemistry Chapman and Hall Ltd. New York 325

    Google Scholar 

  2. J.D. Genders N.L. Weinberg (1992) Electrochemistry for A Cleaner Environment Electrosynthesis Co., East Amherst New York 422

    Google Scholar 

  3. D.N. Bennion J. Newman (1972) J. Appl. Electrochem. 2 113 Occurrence Handle10.1007/BF00609127 Occurrence Handle1:CAS:528:DyaE38XkvVars74%3D

    Article  CAS  Google Scholar 

  4. J.M. Marracino F. Coeuret S. Langlois (1987) Electrochim. Acta 32 1303 Occurrence Handle10.1016/0013-4686(87)85059-4 Occurrence Handle1:CAS:528:DyaL2sXlvVGrsbo%3D

    Article  CAS  Google Scholar 

  5. S. Langlois F. Coeuret (1989) J. Appl. Electrochem. 19 43 Occurrence Handle1:CAS:528:DyaL1MXhsVegu7s%3D

    CAS  Google Scholar 

  6. J. Wang H.D. Dewald (1983) J. Electrochem. Soc. 130 1814 Occurrence Handle1:CAS:528:DyaL3sXltlSgtLs%3D

    CAS  Google Scholar 

  7. C. Ponce De Leon D. Pletcher (1996) Electrochim. Acta 41 533

    Google Scholar 

  8. R. Bertazzoli R.C. Widner M.R.V. Lanza R.A. Di Iglia M.F.B. Sousa (1997) J. Braz. Chem. Soc. 8 487 Occurrence Handle1:CAS:528:DyaK1cXmvVajsw%3D%3D

    CAS  Google Scholar 

  9. R. Carta S. Palmas A.M. Polcaro G. Tola (1991) J. Appl. Electrochem. 21 793 Occurrence Handle1:CAS:528:DyaK3MXls1yqsLs%3D

    CAS  Google Scholar 

  10. K. Kinoshita S.C. Leach (1982) J. Electrochem. Soc. 129 1993 Occurrence Handle1:CAS:528:DyaL38XlvVGgtbw%3D

    CAS  Google Scholar 

  11. M. Paidar K. Bouzek M. Laurich J. Thonstad (2000) Water Environ. Res. 72 618 Occurrence Handle1:CAS:528:DC%2BD3cXnt1Wqu70%3D

    CAS  Google Scholar 

  12. A.K.P. Chu M. Fleischmann G.J. Hills (1974) J. Appl. Electrochem. 4 323 Occurrence Handle1:CAS:528:DyaE2MXptFKgtw%3D%3D

    CAS  Google Scholar 

  13. D. Pletcher I. Whyte F.C. Walsh J.P. Millington (1991) J. Appl. Electrochem. 21 659 Occurrence Handle1:CAS:528:DyaK3MXls1yqu7o%3D

    CAS  Google Scholar 

  14. D. Pletcher I. Whyte F.C. Walsh J.P. Millington (1991) J. Appl. Electrochem. 21 667 Occurrence Handle1:CAS:528:DyaK3MXls1yqu7s%3D

    CAS  Google Scholar 

  15. D. Pletcher I. Whyte F.C. Walsh J.P. Millington (1993) J. Appl. Electrochem. 23 82 Occurrence Handle1:CAS:528:DyaK3sXhsFKktrw%3D

    CAS  Google Scholar 

  16. Y.P. Hor N. Mohamed (2003) J. Appl. Electrochem. 33 279 Occurrence Handle1:CAS:528:DC%2BD3sXksVKjurk%3D

    CAS  Google Scholar 

  17. R.C. Widner M.F.B. Sousa R. Bertazzoli (1998) J. Appl Electrochem. 28 201 Occurrence Handle1:CAS:528:DyaK1cXosF2jtA%3D%3D

    CAS  Google Scholar 

  18. C. Ponce De Leon D. Pletcher (1995) J. Appl. Electrochem. 25 307 Occurrence Handle1:CAS:528:DyaK2MXltVWqtL4%3D

    CAS  Google Scholar 

  19. E. Heitz G. Kreysa (1986) Principles of Electrochemical Engineering Extended version of a DECHEMA Experimental Course VCH Verlagsgesellschaft, Federal Republic of Germany Weinheim 294

    Google Scholar 

  20. J.C. Card (1987) PhD dissertation University of Wisconsin-Madison

  21. J. Podlaha J.M. Fenton (1995) J. Appl. Electrochem. 25 299 Occurrence Handle1:CAS:528:DyaK2MXltVWqt7c%3D

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Ministry of Science, Technology and Environment of Malaysia for financial support of this work through an IRPA grant and the Universiti Sains Malaysia for providing a short-term grant. Special thanks are also due to School of Chemical Sciences, Institute of Postgraduate Studies and a local electroplating company for their support and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Mohamed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hor, Y., Mohamed, N. Removal and recovery of copper via a galvanic cementation system part II: batch-recycle reactor. J Appl Electrochem 35, 609–613 (2005). https://doi.org/10.1007/s10800-005-2322-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-2322-3

Keywords

Navigation