Advertisement

Journal of Applied Electrochemistry

, Volume 35, Issue 7–8, pp 723–731 | Cite as

Photocatalytic and electrochemically assisted photocatalytic oxidation of formic acid on TiO2 films under UVA and UVB irradiation

  • T.A. McMurrayEmail author
  • J.A. Byrne
  • P.S.M. Dunlop
  • E.T. McAdams
Article

Abstract

Titanium dioxide (TiO2) photocatalysis is a possible alternative/complementary technology for water purification. Attempts to increase the overall efficiency of the process include using higher energy UV to gain better quantum efficiency and electrochemically assisting the process by the application of an external electrical potential. In this work, nanocrystalline TiO2 films, prepared on borosilicate glass and indium-doped tin oxide (ITO) borosilicate glass, were used to investigate the photocatalytic and electrochemically assisted photocatalytic oxidation of formic acid under UVA and UVB irradiation. The experiments were carried out in a stirred tank reactor with high mass transfer characteristics. The rate of formic acid oxidation under UVB irradiation was 30% greater as compared to UVA irradiation. A maximum Φapp of 9% was obtained under UVA irradiation in 100% O2 under open circuit or +1.0 V (SCE) applied potential. A maximum Φapp of 20.3% was obtained under UVB irradiation with 100% O2 using TiO2 on borosilicate glass. Φapp was 19% for +1.0 V, 100% O2, using TiO2 on ITO borosilicate glass under UVB irradiation. The increase in oxidation rates and Φapp with UVB irradiation are due to the higher extinction coefficient of TiO2 at shorter wavelengths and/or the promotion of conduction band electrons to higher more stable states, thus reducing the rate of recombination of charge carriers. The use of a UVB source as compared to a UVA source results in a significant increase in the rate of oxidation and increased apparent quantum yields, however, a cost analysis of the process would be required to determine the economic viability of employing UVB sources. Electrochemically assisted photocatalysis may prove beneficial in large-scale reactors where mass transfer limitations exist.

Keywords

electrochemically assisted photocatalysis formic acid photocatalysis titanium dioxide UVA UVB 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hoffmann, M.R., Martin, S.T., Choi, W.Y., Bahnemann, D.W. 1995Chem. Rev9569CrossRefGoogle Scholar
  2. 2.
    Mills, A., Davies, R.H., Worsley, D. 1993Chem. Soc. Rev22417CrossRefGoogle Scholar
  3. 3.
    Mills, A., LeHunte, S. 1997J. Photochem. Photobiol. A-Chem1081Google Scholar
  4. 4.
    O’Regan, B., Moser, J., Anderson, M., Gratzel, M. 1990J. Phys. Chem948720Google Scholar
  5. 5.
    Dijkstra, M.F.J., Buwalda, H., Jong, A.W.F., Michorius, A., Winkelman, J.G.M., Beenackers, A.A.C.M. 2001Chem. Eng. Sci56547Google Scholar
  6. 6.
    Choi, W.Y., Termin, A., Hoffmann, M.R. 1994Angew. Chem.-Int. Edit. Engl331091Google Scholar
  7. 7.
    Mills, A., Morris, S. 1993J. Photochem. Photobiol. A-Chem71285Google Scholar
  8. 8.
    Stafford, U., Gray, K.A., Kamat, P.V. 1997J. Catal16725CrossRefGoogle Scholar
  9. 9.
    Sczechowski, J.G., Koval, C.A., Noble, R.D. 1993J. Photochem. Photobiol. A-Chem74273Google Scholar
  10. 10.
    Prairie, M.R., Evans, L.R., Stange, B.M., Martinez, S.L. 1993Env. Sci. Technol271776Google Scholar
  11. 11.
    Butterfield, I.M., Christensen, P.A., Curtis, T.P., Gunlazuardi, J. 1997Water. Res31675CrossRefGoogle Scholar
  12. 12.
    McMurray, T.A., Byrne, J.A., Dunlop, P.S.M., Winkelman, J.G.M., Eggins, B.R., McAdams, E.T. 2004Appl. Catal. A-Gen262105CrossRefGoogle Scholar
  13. 13.
    Byrne, J.A., Eggins, B.R., Brown, N.M.D., McKinney, B., Rouse, M. 1998Appl. Catal. B-Environ1725Google Scholar
  14. 14.
    Philips Lighting, Lamps for Special purposes, Report (1999).Google Scholar
  15. 15.
    Calvert, J.G., Pitts, J.N. 1973PhotochemistryJohn Wiley & SonsNew York783Google Scholar
  16. 16.
    Mills, A., Wang, J.S. 1998J. Photochem. Photobiol. A-Chem11853Google Scholar
  17. 17.
    Chang, H.T., Wu, N.M., Zhu, F.Q. 2000Water Res34407Google Scholar
  18. 18.
    Blazkova, A., Csolleova, I., Brezova, V. 1998J. Photochem. Photobiol. A-Chem113251Google Scholar
  19. 19.
    B.V. Blanckenhagen and D. Tonova. Characterisation of thin film materials for optical coatings: Approaches beyond UV/VIS/NIR spectroscopy, Proceedings of the Colloquium on Optical Spectrometry, Berlin, 11–12 November (2002).Google Scholar
  20. 20.
    Bard, A.J., Faulkner, L.R. 1980Electrochemical Methods: Fundamentals and ApplicationsJohn Wiley & SonsNew York577Google Scholar
  21. 21.
    Hodes, G., Howell, I.D.J., Peter, L.M. 1992J. Electrochem. Soc1393136Google Scholar
  22. 22.
    Hagfeldt, A., Lindstrom, H., Sodergren, S., Lindquist, S.E. 1995J. Electroanal. Chem38139CrossRefGoogle Scholar
  23. 23.
    Sodergren, S., Hagfeldt, A., Olsson, J., Lindquist, S.E. 1994J. Phys. Chem985552Google Scholar
  24. 24.
    Vinodgopal, K., Hotchandani, S., Kamat, P.V. 1993J. Phys. Chem979040CrossRefGoogle Scholar
  25. 25.
    Hidaka, H., Asai, Y., Zhao, J.C., Nohara, K., Pelizzetti, E., Serpone, N. 1995J. Phys. Chem998244CrossRefGoogle Scholar
  26. 26.
    Byrne, J.A., Eggins, B.R. 1998J. Electroanal. Chem45761CrossRefGoogle Scholar
  27. 27.
    Vinodgopal, K., Bedja, I., Kamat, P.V. 1996Chem. Mat82180Google Scholar
  28. 28.
    Gerischer, H., Heller, A. 1991J. Phys. Chem955261Google Scholar
  29. 29.
    Byrne, J.A., Davidson, A., Dunlop, P.S.M., Eggins, B.R. 2002J. Photochem. Photobiol. A-Chem148365Google Scholar
  30. 30.
    Kim, D.H., Anderson, M.A. 1994Environ. Sci. Technol28479CrossRefGoogle Scholar
  31. 31.
    Kim, D.H., Anderson, M.A. 1996J. Photochem. Photobiol. A-Chem94221Google Scholar
  32. 32.
    Candal, R.J., Zeltner, W.A., Anderson, M.A. 2000Environ. Sci. Technol343443CrossRefGoogle Scholar
  33. 33.
    Hidaka, H., Ajisaka, K., Horikoshi, S., Oyama, T., Takeuchi, K., Zhao, J., Serpone, N. 2001J. Photochem. Photobiol. A-Chem138185Google Scholar
  34. 34.
    Krysa, J., Jirkovsky, J. 2002J. Appl. Electrochem32591Google Scholar
  35. 35.
    Hidaka, H., Nagaoka, H., Nohara, K., Shimura, T., Horikoshi, S., Zhao, J., Serpone, N. 1996J. Photochem. Photobiol. A-Chem9873Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • T.A. McMurray
    • 1
    Email author
  • J.A. Byrne
    • 1
  • P.S.M. Dunlop
    • 1
  • E.T. McAdams
    • 1
  1. 1.NIBECUniversity of Ulster at JordanstownNorthern IrelandUK

Personalised recommendations