Journal of Applied Electrochemistry

, Volume 35, Issue 7–8, pp 733–740 | Cite as

Mechanism of degradation of nitrilotriacetic acid by heterogeneous photocatalysis over TiO2 and platinized TiO2

  • Carina A. Emilio
  • Raquel Gettar
  • Marta I. LitterEmail author


TiO2-heterogeneous photocatalysis of nitrilotriacetic acid (NTA) at pH 2.5 was studied to establish the kinetic regime and the reaction mechanism. Pure Degussa P-25 and Hombikat UV100 commercial samples were compared. A Langmuirian behavior was observed over P-25. Platinization of the Hombikat sample (0.5 wt.%) caused an important increase on the photocatalytic rate with a change in the kinetics from zero order in the pure precursors to first order in the platinized sample. The nature of the intermediates and their evolution with time were compared on all systems. Glycine, iminodiacetic and oxamic acids have been identified in different proportions, together with ammonium and glycolic acid, depending on the catalyst used. The rapid depletion of NTA was not accompanied by a corresponding total organic carbon (TOC) reduction, but 84% of TOC decrease was obtained on P25 after 24 h, a very reasonable result for refractory compounds. A detailed mechanism is proposed for the photocatalytic reaction, suggested to be the same over the three catalysts here tested.


heterogeneous photocatalysis nitrilotriacetic acid (NTA) platinized TiO2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Crosbie, G.A., Lodi, A., McB Miller, J.H., Skellern, G.G. 2003J. Pharmac. Biomedical Anal33435Google Scholar
  2. 2.
    Anderegg, G. 1986Inorg. Chim. Acta121229CrossRefGoogle Scholar
  3. 3.
    White, V.E., Knowles, C.J. 2003Int. Biodeterior. Biodegrad52143Google Scholar
  4. 4.
    M. Sellers, Central Electricity Generating Board Report no. RD/B/N4429 (1979).Google Scholar
  5. 5.
    Sellers, M. 1983Radiat. Phys. Chem21295Google Scholar
  6. 6.
    Muñoz, F, von Sonntag, C. 2000J. Chem. Soc., Perkin Trans22029Google Scholar
  7. 7.
    Shimp, R.J., Lapsins, E.V., Ventullo, R.M. 1994Environ. Toxicol. Chem13205Google Scholar
  8. 8.
    Egli, T. 2001J. Bioscience Bioeng9289Google Scholar
  9. 9.
    Alder, A.C., Siegrist, H., Gujer, W., Giger, W. 1990Water Res24733CrossRefGoogle Scholar
  10. 10.
    Larson, R.J., Clinckemaillie, G.G., Van Belle, L. 1981Water Res15615Google Scholar
  11. 11.
    Sörensen, M., Frimmel, F.H. 1995Z. Naturforsch50b1845Google Scholar
  12. 12.
    Sahul, K., Sharma, B.K. 1987J. Radioanal. Nucl. Chem109321Google Scholar
  13. 13.
    Sahul, K., Sharma, B.K. 1987Appl. Radiat. Isot38985Google Scholar
  14. 14.
    O. Abida, C. Emilio, N. Quici, R. Gettar, M. Litter, G. Mailhot and M. Bolte in A. Vogelpohl, S.U. Geißen, B. Kragert and M. Sievers (Eds.), ‘Oxidation Technologies for Water and Wastewater Treatment III’, Water Sci. Technol. 49 (2004) 123–128.Google Scholar
  15. 15.
    Andrianirinaharivelo, S.L., Pilichowski, J.F., Bolte, M. 1993Trans. Met. Chem1837CrossRefGoogle Scholar
  16. 16.
    Stolzberg, R.J., Hume, D.N. 1975Environ. Sci. Technol9654CrossRefGoogle Scholar
  17. 17.
    C.A. Emilio, J.F. Magallanes, M.I. Litter, The 11th International Conference on Surface and Colloid Science, Iguassu Falls, Brazil, 15–19 September 2003.Google Scholar
  18. 18.
    Siemon, U., Bahnemann, D., Testa, J.J., Rodríguez, D., Bruno, N., Litter, M.I. 2002J. Photochem. Photobiol. A: Chem148247CrossRefGoogle Scholar
  19. 19.
    Hufschmidt, D., Bahnemann, D., Testa, J.J., Emilio, C.A., Litter, M.I. 2002J. Photochem. Photobiol. A: Chem148225CrossRefGoogle Scholar
  20. 20.
    Emilio, C.A., Testa, J.J., Hufschmidt, D., Colón, G., Navío, J.A., Bahnemann, D.W., Litter, M.I. 2004J. Ind. Eng. Chem10129Google Scholar
  21. 21.
    Hatchard, C.G., Parker, C.A. 1956Proc. Roy. Soc. (London)A 235518Google Scholar
  22. 22.
    Martell, A.E., Smith, R.M. 1974Critical Stability ConstantsPlenum PressNew York and London139Google Scholar
  23. 23.
    Babay, P.A., Emilio, C.A., Ferreyra, R.E., Gautier, E.A., Gettar, R.T., Litter, M.I. 2001Int. J. Photoenergy3193Google Scholar
  24. 24.
    Rodríguez, R., Blesa, M.A., Regazzoni, A.E. 1996J. Colloid Interface Sci177122CrossRefGoogle Scholar
  25. 25.
    Shin, E.-M., Senthruchelvan, R., Muñoz, J., Basak, S., Rajeshwar, K. 1996J. Electrochem. Soc1431562Google Scholar
  26. 26.
    P.A. Babay, C.A. Emilio, R.E. Ferreyra, E.A. Gautier, R.T. Gettar and M.I. Litter in A. Vogelpohl, S.U. Geissen, B. Kragert and M. Sievers (Eds.), ‘Oxidation technologies for water and wastewater treatment (II)’ Water Sci. Technol. 44 (2001) 179–185.Google Scholar
  27. 27.
    Li, Y., Wasgestian, F. 1998J. Photochem. Photobiol. A: Chem112255CrossRefGoogle Scholar
  28. 28.
    Litter, M.I. 1999Appl. Catal. B: Environ2389CrossRefGoogle Scholar
  29. 29.
    Neta, P., Simic, M., Hayon, E. 1970J. Phys. Chem741214Google Scholar
  30. 30.
    J. Lati and D. Meyerstein, J. Chem. Soc. Daltons Trans. Vol. 1 (1978) 1105.Google Scholar
  31. 31.
    Low, G.K.C., McEvoy, S.R., Matthews, R.W. 1991Environ. Sci. Technol25460CrossRefGoogle Scholar
  32. 32.
    N. Quici, M.E. Morgada, G. Piperata, P. Babay, R.T. Gettar and M.I. Litter, Catal. Today, accepted.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Carina A. Emilio
    • 1
  • Raquel Gettar
    • 1
  • Marta I. Litter
    • 1
    Email author
  1. 1.Unidad de Actividad Química, Centro Atómico ConstituyentesComisión Nacional de Energía AtómicaSan MartínArgentina

Personalised recommendations