Skip to main content
Log in

An experimental comparison of a graphite electrode and a gas diffusion electrode for the cathodic production of hydrogen peroxide

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This work studies the production of hydrogen peroxide through the cathodic reduction of oxygen in acidic medium, by comparing the results obtained using a commercial graphite and a gas diffusion electrode. A low pH was required to allow the application of hydrogen peroxide generation to an electro-Fenton process. The influence of applied potential and the gas flow composition were investigated. The gas diffusion electrode demonstrates a higher selectivity for hydrogen peroxide production, without significantly compromising the iron regeneration, thus making its successful application to a cathodic Fenton-like treatment, possible. Unlike the graphite cathode, the gas diffusion cathode also proved to be effective in the air flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Pletcher, Electrogenerated Hydrogen Peroxide-From history to new opportunities January 1999 Vol.4 No 1. http://www.electrosynthesis.com

  2. B.C. Larish S.J.B. Duff (1997) Water Res 31 IssueID7 1694

    Google Scholar 

  3. L. Plant M. Jeff (1994) Chem. Eng. 9 EE16

    Google Scholar 

  4. P. Drogui S. Elmaleh M. Rumeau C. Bernard A. Rambaud (2001) J. Appl. Electrochem 31 877

    Google Scholar 

  5. M. Doré (1989) Chimie des oxydants et traitement des eaux Lavoisier Paris 250

    Google Scholar 

  6. A. Gallegos D. Pletcher (1998) Electrochimica Acta 44 853

    Google Scholar 

  7. J. De Laat H. Gallard S. Ancelin B. Legube (1999) Chemosphere 39 IssueID15 2693

    Google Scholar 

  8. H.J.H. Fenton (1894) J. Chem. Soc 65 899

    Google Scholar 

  9. F. Haber J. Weiss (1934) Proc. Royal Soc A 147 322

    Google Scholar 

  10. S.M. Arnold W.J. Hickey R.F. Harris (1995) Environ. Sci. Technol 29 2083

    Google Scholar 

  11. Y.W. Kang K.Y. Hwang (2000) Water Res 34 IssueID10 2786

    Google Scholar 

  12. A. Goi M. Trapido (2002) Chemosphere 46 913

    Google Scholar 

  13. E. Chamarro A. Marco S. Esplugas (2001) Water Res 35 IssueID4 1047

    Google Scholar 

  14. M.V. Balarama Krishna K. Chandrasekaran D. Karunasagar J. Arunachalam (2001) J. Haz. Mat. B 84 229

    Google Scholar 

  15. J.S. Do W.C. Yeh (1998) J. Appl. Electrochem 28 703

    Google Scholar 

  16. M.A. Oturan (2000) J. Appl. Electrochem 30 475

    Google Scholar 

  17. T. Tzedakis A. Savall M.J. Clifton (1989) J. Appl. Electrochem. J. Phys. Chem 19 911

    Google Scholar 

  18. A. Alvarez-Gallegos D. Pletcher (1999) Electrochimica Acta 44 2483

    Google Scholar 

  19. S. Chou Y.H. Huang S.N. Lee G.H. Huang C. Huang (1999) Wat. Res 33 IssueID3 751

    Google Scholar 

  20. Y.L. Hsiao K. Nobe (1993) J. Appl. Electrochem 23 943

    Google Scholar 

  21. M.A. Oturan N. Oturan C. Lahitte S. Trevin (2001) J. Electroanal. Chem 50 796

    Google Scholar 

  22. M. Panizza G. Cerisola (2001) Water Res 35 IssueID16 3987

    Google Scholar 

  23. C. Ponce De Leon D. Pletcher (1995) J. Appl. Electrochem 25 307

    Google Scholar 

  24. K. Pratap A.T. Lemley (1998) J. Agric. Food Chem 46 3285

    Google Scholar 

  25. A. Ventura A. Jacquet A. Bermond V. Camel (2002) Water Res 36 3517

    Google Scholar 

  26. M. Sudoh M. Kitaguchi K. Koide (1985) J. Chem. Eng. Jpn 18 IssueID5 409

    Google Scholar 

  27. E.E. Kalu C. Oloman (1990) J. Appl. Electrochem 20 932

    Google Scholar 

  28. P.C. Foller R.T. Bombard (1995) J. Appl. Electrochem 25 613

    Google Scholar 

  29. E. Brillas R.M. Bastida E. Llosa J. Casado (1995) J. Electrochem. Soc 142 IssueID6 1733

    Google Scholar 

  30. E. Brillas E. Mur J. Casado (1996) J. Electrochem. Soc 143 L49

    Google Scholar 

  31. F. Alcaide E. Brillas P.L. Cabot (2002) J. Electrochem. Soc 149 IssueID2 E64

    Google Scholar 

  32. T. Harrington D. Pletcher (1999) J. Electrochem. Soc 146 IssueID8 2983

    Google Scholar 

  33. Z. Qiang J.H. Chang C.P. Huang (2002) Water Res 36 85

    Google Scholar 

  34. APHA, AWWA, WPCF, Standard Method for the Examination of Water and Wastewater (Baltimore, MA, 1989) 19th ed

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Petrucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pozzo, A., Palma, L., Merli, C. et al. An experimental comparison of a graphite electrode and a gas diffusion electrode for the cathodic production of hydrogen peroxide. J Appl Electrochem 35, 413–419 (2005). https://doi.org/10.1007/s10800-005-0800-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-0800-2

Key words:

Navigation