Skip to main content
Log in

Removal of vegetal tannins from wastewater by electroprecipitation combinedwith electrogenerated Fenton oxidation

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Synthetic solutions containing up to 2000 ppm of gallotannic acid and real wastewater from vegetal tanning processes with values of chemical oxygen demand (COD) exceeding 100 000 ppm were decontaminated by electrolysis using a sacrificial iron anode coupled to either a titanium-platinised or an O2-diffusion cathode. Experiments were performed in the presence of oxidants and oxidation promoters such as air, oxygen and hydrogen peroxide, the latter being directly added to the solution or electrogenerated by the O2-diffusion cathode. COD and UV-visible absorbance evolution showed that tannins are removed from electrolysed solutions down to relatively low values, permitting more than 94% elimination. Partial oxidation of the mother compound generates short-chain by-products (mostly carboxylic acids) responsible for the remaining low COD values. Contaminants (tannins and non-tannins) contained in industrial wastewater were removed by combining electroprecipitation with a Fenton-assisted process; a final oxidation step, carried out on a boron-doped diamond electrode, was performed in order to decrease the COD to very low final values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • D. Besserer (1996) Leder 47 242

    Google Scholar 

  • R.B. Chaudhary V.D. Bharti (1999) Asian J. Chem. 11 873

    Google Scholar 

  • M. Clercq ParticleLe J. Plicht Particlevan der A.J. Meijer Harro (1998) Anal. Chim. Acta 370 19

    Google Scholar 

  • G. Sekaran K. Chitra M. Mariappan K.V. Raghavan (1996) J. Environ. Sci. Health, Part A: Environ. Sci. Eng. Toxic Hazard. Subst. Control A31 579

    Google Scholar 

  • K. Smiechowski M. Mendrycka (1997) Chem. Inz. Ekol. 4 427

    Google Scholar 

  • A.G. Espantaleion J.A. Nieto A. Marsal (1997) AQEIC Bol. Tec. 48 169

    Google Scholar 

  • X. Zhan A. Miyazaki Y. Nakano (2001) J. Chem. Eng. Japan 34 1204

    Google Scholar 

  • V.P. Vinod T.S. Anirudhan (2002) J. Chem. Technol. Biotechnol. 77 92

    Google Scholar 

  • E. Ravikumar G. Sekaran B. Arabindoo V. Murugesan (1998) Indian J. Environ. Prot. 18 655

    Google Scholar 

  • B. Ye (1998) Gongye Shuichuli 18 43

    Google Scholar 

  • B. Ram P.K. Bajpai H.K. Parwana (1997) Indian J. Environ. Prot. 17 175

    Google Scholar 

  • M.A. Fonseca Almeida A.R. Rui Boaventura (1998) Waste Manag. 17 201

    Google Scholar 

  • L. Etiegni M. Wakoli K. Ofosu-Asiedu (1999) Water Sci. Technol. 39 321

    Google Scholar 

  • M.G. Zenaitis S.J.B. Duff (2002) Ozone: Sci. Eng. 24 83

    Google Scholar 

  • J.C. Jochimsen H. Schenk M.R. Jekel W. Hegemann (1997) Water Sci. Technol. 36 209

    Google Scholar 

  • K.J. Sreeram R. Gayatri J.R. Rao B.U. Nair T. Ramasami (1998) J. Sci. Ind. Res. 57 64

    Google Scholar 

  • M. Sankar G. Sekaran S. Sadulla K.A. Shanmugasundaram M. Mariappan (1998) Ind. Environ. J. Prot. 18 206

    Google Scholar 

  • S.J. Ali J.R. Rao B.U. Nair (2000) Green Chem. 2 298

    Google Scholar 

  • J. Ch. Jochimsen, Fortschr.-Ber. VDI, Reihe 15, 190, i–xii (1997) 1

  • P. Dwibedy G.R. Dey D.B. Naik K. Kishore P.N. Moorthy (1999) Phys. Chem. Chem. Phys. 1 1915

    Google Scholar 

  • K. Vijayaraghavan T.K. Ramanujam N. Balasubramanian (1998) J. Environ. Eng. (Reston, Va.) 124 887

    Google Scholar 

  • X. Qu J. Zhou H. Yin Y. Sun Sh. Zhang (2002) Fenxi Huaxue 30 192

    Google Scholar 

  • K. Nam W. Rodriguez J.J. Kukor (2001) Chemosphere 45 11 Occurrence Handle10.1016/S0045-6535(01)00051-0 Occurrence Handle1:CAS:528:DC%2BD3MXlsFymsb8%3D Occurrence Handle11572585

    Article  CAS  PubMed  Google Scholar 

  • A.G. Vlyssides Cl. J. Israilides (1997) Environ. Pollut. 97 147

    Google Scholar 

  • J. Naumczyk M. Wojtkowska (1996) Chem. Inz. Ekol. 3 481

    Google Scholar 

  • B. Boye M.M. Dieng E. Brillas (2002) Electrochim. Acta 48 781

    Google Scholar 

  • B. Boye M.M. Dieng E. Brillas (2003) J. Electroanal. Chem. 540 25

    Google Scholar 

  • B. Boye M.M. Dieng E. Brillas (2003) J. Electrochem. Soc. 150 E148

    Google Scholar 

  • A. Buso L. Balbo M. Giomo G. Farnia G. Sandonà (2000) Ind. Eng. Chem. Res. 39 494

    Google Scholar 

  • E. Brillas E. Mur J. Casado (1996) J. Electrochem. Soc. 143 L49

    Google Scholar 

  • E. Brillas J.C. Calpe J. Casado (2000) J. Water Res. 34 2253

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Farnia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boye, B., Farnia, G., Sandonà, G. et al. Removal of vegetal tannins from wastewater by electroprecipitation combinedwith electrogenerated Fenton oxidation. J Appl Electrochem 35, 369–374 (2005). https://doi.org/10.1007/s10800-005-0797-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-0797-6

Keywords

Navigation