Skip to main content
Log in

The Influence of electrochemical surface modifications on naval steel corrosion

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The corrosion behaviour of naval steels is characterized by cyclic voltammetric profiles, open-circuit potential decays and polarization curves in 0.5 M sodium nitrate and in 0.6 M sodium chloride at 20 °C. Naval steel surfaces can be modified by the application of periodic symmetric and/or asymmetric potential routines in strong alkaline solutions. These perturbations produce the formation of protective or non-protective surface oxides, which can be characterized by scanning electron microscopy and cyclic voltammetry. Corrosion parameters of the new surface oxides are evaluated by polarization curves after long-time exposures in electrolytes containing sodium chloride and sodium nitrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N.A. North (1976) Int. J. Underwater Arch. Underwater Explr. 5 253

    Google Scholar 

  2. I.D. Mc Leod (1993) NoChapterTitle Trends in Corr. Research pub. Council Scientific Research India 221

    Google Scholar 

  3. C.F. Zinola, “New corrosion methodologies for naval steel protection” CSIC Project (1999–2001). Universidad de la República, Montevideo, Uruguay

  4. “An in situ study of the corroded hull of HMVS Cerberus”, I. Mc.Leod, 13th. Meeting of the International Corrosion Council, (1994), p. 125

  5. Y. González M.C. Lafont N. Pebere (1996) J. Appl. Electrochem. 26 1259

    Google Scholar 

  6. T.P. Hoar (1972) Inst. of Corr. Tech. 32 19

    Google Scholar 

  7. C. Andrade M. Keddam X.R. Novoa M.C. Pérez C.M. Rangel H. Takenouti (2001) Electrochim. Acta 46 3905

    Google Scholar 

  8. M.E. Martins C.F. Zinola G. Andreasen R.C. Salvarezza A.J. Arvia (1998) J. Electroanal. Chem. 445 135

    Google Scholar 

  9. A. Czerwinski J. Sobkowski (1974) J. Electroanal. Chem. 55 391

    Google Scholar 

  10. A. Visintín J.C. Canullo W.E. Triaca A.J. Arvia (1988) J. Electroanal. Chem. 239 67

    Google Scholar 

  11. W.E. Triaca T. Kessler J.C. Canullo A.J. Arvia (1987) J. Electrochem. Soc. 134 1165

    Google Scholar 

  12. C.F. Zinola A. Castro Luna W.E. Triaca A.J. Arvia (1994) J. Appl. Electrochem. 24 119

    Google Scholar 

  13. S.A. Bilmes M.C. Giordano A.J. Arvia (1988) Can. J. Chem. 66 2259

    Google Scholar 

  14. C.F. Zinola A. M. CastroA. Luna (1995) Corros. Sci. 37 1919

    Google Scholar 

  15. S.B. Lalvani G. Zhang (1995) Corros. Sci. 37 1567–1583

    Google Scholar 

  16. S.B. Lalvani J.C. Kang N. Mandich (1998) Corros. Sci. 40 201

    Google Scholar 

  17. S.B. Lalvani J.C. Kang M. Murthy (1995) Corros. Sci. 37 1599

    Google Scholar 

  18. F. Mansfeld S.H. Lin L. Kwiatkowski (1993) Corros. Sci. 34 2045

    Google Scholar 

  19. A.E. Bolzán A.M. Castro Luna A. Visintín R.C. Salvarezza A.J. Arvia (1998) Electrochim. Acta. 33 1743

    Google Scholar 

  20. G. Rocchini (1999) Corros. Sci. 41 2353

    Google Scholar 

  21. D. Sazou M. Pagitsas (2002) Electrochim. Acta. 47 1567

    Google Scholar 

  22. A. Saraby-Reintejes (1985) Electrochim. Acta. 30 403

    Google Scholar 

  23. H. Prinz H.H. Strehblow (1998) Corros. Sci. 40 1671

    Google Scholar 

  24. J.S. Noh N.J. Laycock W. Gao D.B. Wells (2000) Corros. Sci. 42 2069

    Google Scholar 

  25. A. Wieckowski E. Ghali (1985) Electrochim. Acta. 30 1423

    Google Scholar 

  26. B. Kabanov R. Burshtein A.K.N. Frumkin (1947) Discuss. Faraday Soc. 1 259

    Google Scholar 

  27. Y. Zuo H. Wang J. Zhao J. Xiong (2002) Corros. Sci. 44 13

    Google Scholar 

  28. C. Carboni, P. Peyre, G. Béranger, C. Lemaitre and R. Fabbro, ‘Improvement of the pitting corrosion resistance of AISI 316L stainless steel by laser shock waves’, 52nd San Francisco ISE Meeting. Corrosion, Electrodeposition and Surface Treatment Section, Abstract CI-53, 2–7 September 2001

  29. M. Cerviño W.E. Triaca A.J. Arvia (1985) J. Electroanal. Chem. 182 51

    Google Scholar 

  30. J. Gómez L. Vásquez A.M. Baró N. García C.L. Perdriel W.E. Triaca A.J. Arvia (1986) Nature 323 612

    Google Scholar 

  31. R.R. Adzic, ‘Modern Aspects of Electrochemistry’, N. 18, Chap. 5, p. 163, R.E. White, B.E. Conway, E.B. Yeager (Eds) Plenum Press, New York (1988)

  32. G.A. Somorjai, ‘Introduction to Surface Chemistry and Catalysis’, Chap. 2, J. Wiley & Sons (ed.) New York (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. F. Zinola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zinola, C.F., Díaz, V., Martínez, S. et al. The Influence of electrochemical surface modifications on naval steel corrosion. J Appl Electrochem 35, 449–458 (2005). https://doi.org/10.1007/s10800-004-8345-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-004-8345-3

Keywords

Navigation