Skip to main content
Log in

An electrochemical study of the dissolution of gold in thiosulfate solutions. Part II. Effect of Copper

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Thiosulfate has been considered as one of the most promising of the non-toxic alternatives to cyanide for the leaching of gold and much work has been carried out with the aim of understanding and improving the ammoniacal thiosulfate leaching process. In particular the behaviour of gold in thiosulfate solutions containing copper in the absence of ammonia has received little attention. It has been shown in this study involving electrochemical and leaching tests that copper ions catalyze not only the oxidation of thiosulfate but also the dissolution of gold in alkaline thiosulfate solutions. Electrochemical studies have shown that copper has a positive effect on the anodic dissolution of gold with increasing concentrations of copper resulting in higher dissolution rates of gold at a potential of 0.3 V. Studies on the dissolution of gold powder in alkaline oxygenated thiosulfate solutions containing low concentrations of copper have shown that the role of copper in enhancing the dissolution rate of gold is possibly associated with the formation of a copper–thiosulfate–oxygen intermediate which is more reactive in terms of cathodic reduction than dissolved oxygen. The electrochemical experiments have been complemented by a leaching study which has shown that milling of gold powder in the presence of copper (added as ions, metal, or oxide) assists with the dissolution of gold in thiosulfate solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M.G. Aylmore D.M. Muir (2001) Minerals Eng. 14 135

    Google Scholar 

  • R.Y. Wan, in World Gold ‘97 Conference, Singapore, (Australasian Institute of Mining and Metallurgy, 1997), p. 159.

  • H.A. White (1905) J. Chem. Metall. Min. Soc. S. Afr. 5 109

    Google Scholar 

  • J.G. Webster (1986) Geochim. Cosmochim. Acta 50 1837

    Google Scholar 

  • S. Zhang M.J. Nicol (2003) J. Appl. Electrochem. 33 767

    Google Scholar 

  • C. Abbruzzese P. Fornari R. Massidda F. Veglio S. Ubaldini (1995) Hydrometallurgy 39 265

    Google Scholar 

  • D. Zipperian S. Raghavan J.P. Wilson (1988) Hydrometallurgy 19 361

    Google Scholar 

  • P.L. Breuer M.I. Jeffrey (2000) Minerals Eng. 13 1071

    Google Scholar 

  • N.G. Tyurin I.A. Kakovskii (1960) Izvest. Vysshikh Ucheb. Zavedenii Tsvetnaya Met. 3 6

    Google Scholar 

  • K.A. Ter-Arakelyan K.A. Bagdasaryan A.G. Oganyan R.T. Mkrtchyan G.G. Babayan (1984) Izv. Vyssh. Uchebn. Zaved Tsvetn. Metal. 5 72

    Google Scholar 

  • P.L. Breuer M.I. Jeffrey (2002) Hydrometallurgy 65 145

    Google Scholar 

  • P.L. Breuer M.I. Jeffrey (2003) Minerals Eng. 16 21

    Google Scholar 

  • J.J. Byerley S.A. Fouda G.L. Rempel (1973) J. Chem. Soc. Dalton Trans. 8 889

    Google Scholar 

  • J.J. Byerley S.A. Fouda G.L. Rempel (1975) J. Chem. Soc. Dalton Trans. 13 1329

    Google Scholar 

  • J.W. Mellor (1929) A comprehensive treatise on inorganic and theoretical chemistry, Vol. X Longmans London 530–531

    Google Scholar 

  • D.S. Flett R. Derry J.C. Wilson (1983) Trans. Inst. Min. Metall Section C 92 216

    Google Scholar 

  • P.L. Breuer, M.I. Jeffrey and W.L. Choo, in C. Young, L. Twidwell and C. Anderson(Eds), ‘Cyanide: Social, Industrial and Economic Aspects’, (TMS, Warrendale, Pennsylvania, 2001), p. 455.

  • G. Rabai I.R. Epstein (1992) Inorg. Chem. 31 3229

    Google Scholar 

  • R. Briones G.T. Lapidus (1998) Hydrometallurgy 50 243

    Google Scholar 

  • E. Rolia C.L. Chakrabarti (1982) Environ. Sci. Techno. 16 852

    Google Scholar 

  • F.R. Hopf M.M. Rogic J.F. Wolf (1983) J. Phys. Chem. 87 4681

    Google Scholar 

  • I. Pecht M. Anbar (1968) J. Chem. Soc. A. 8 1902

    Google Scholar 

  • H. Nord (1955) Acta Chem. Scand. 9 430

    Google Scholar 

  • A.D. Zuberbühler (1967) Helv. Chim. Acta 50 466

    Google Scholar 

  • A.D. Zuberbühler (1983) NoChapterTitle J. Zubieta (Eds) Copper coordination chemistry: Biochemical and inorganic prospectives Academic Press New York 237

    Google Scholar 

  • L.I. Simandi (1992) Catalytic activation of dioxygen by metal complexes, Vol. 13 Kluwer Academic Publishers Dordrecht, The Netherlands 396

    Google Scholar 

  • M.I. Jeffrey (2001) Hydrometallurgy 60 7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Nicol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Nicol, M.J. An electrochemical study of the dissolution of gold in thiosulfate solutions. Part II. Effect of Copper. J Appl Electrochem 35, 339–345 (2005). https://doi.org/10.1007/s10800-004-7469-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-004-7469-9

Keywords

Navigation