Journal of Applied Electrochemistry

, Volume 35, Issue 2, pp 217–227 | Cite as

Electrochemical and AFM study of Zn electrodeposition in the presence of benzylideneacetone in a chloride-based acidic bath

  • P. Díaz-Arista
  • Y. Meas
  • R. Ortega
  • G. TrejoEmail author


The influence of benzylideneacetone (BDA) on the mechanism of zinc deposition and nucleation was studied by voltammetry, chronoamperometry and atomic force microscopy (AFM). The addition of BDA to the electrolyte solution partially inhibited (97%) the reduction of zinc at the potential E = −1.15 vs SCE/V, giving rise to an increase in the overpotential for the discharge of the metal ion. This leads to the existence of two reduction processes with different energies that involve the same species, ZnCl 4 2- . Analysis of chronoamperograms obtained in the absence and presence of BDA indicates that distinct nucleation mechanisms are involved during the initial stages of Zn deposition. In the absence of BDA, the transients are consistent with the model of 3D diffusion-controlled nucleation. In the presence of BDA, the transients exhibit a more complex form involving two growth processes. The first process, which occurs at short times, is explained in terms of a combination of three simultaneous nucleation processes: 2D progressive, 2D instantaneous, and 3D progressive nucleation, each limited by the incorporation of adatoms. The second process, which occurs at longer times, involves the three processes that occur at short times in conjunction with a principal contribution from a diffusion-controlled 3D nucleation mechanism. AFM imaging shows that the morphology of the deposited zinc depends on the applied electrode potential.


additives benzylideneacetone electrodeposition electrocrystallization zinc 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barceló, G., Sarret, M., Müller, C., Pregonas, J. 1988Electrochim. Acta.4313Google Scholar
  2. Rajendran, S., Bharanti, S., Krishna, C. 1997Plat. Surf. Finish.8453OctoberGoogle Scholar
  3. Hosny, A.Y., El-Rofei, M.E., Ramadan, T.A., El-Gafari, B.A. 1995Metal Finish.9355NovemberGoogle Scholar
  4. Lin, K.L., Yang, C.F., Lee, J.T. 1991Corrosion479Google Scholar
  5. Bozzini, B., Accardi, V., Cavalloti, P.L., Pavan, F. 1999Metal Finish.9733MayGoogle Scholar
  6. Raeissi, K., Saatchi, A., Golozar, M.A. 2003J. Appl. Electrochem.33635Google Scholar
  7. Yu, J., Wang, L., Su, L., Ai, X., Yang, H. 2003J. Electrochem. Soc.150C19Google Scholar
  8. Trejo, G., Borges, R. Ortega, Meas, Y., Chainet, V.E., Nguyen, B., Ozil, P. 1998J. Electrochem. Soc.1454090Google Scholar
  9. Singh, D.D.N., Dey, M, Singh, V. 2002Corrosion58971Google Scholar
  10. Cruz, M. Sanchez, Alonso, F., Palacios, J.M. 1993J. Appl. Electrochem.23364Google Scholar
  11. Yu, J., Yang, H., Ai, X., Chen, Y. 2002Russian J. Electrochem.38363Google Scholar
  12. Baik, D.S., Fray, D.J. 2001J. Appl. Electrochem.311141Google Scholar
  13. Mockute, D., Bernotiene, G. 1996Chemija290Google Scholar
  14. Bernotiene, G., Mockute, D. 1994Russian J. Electrochem.30146Google Scholar
  15. Trejo, G., Ortega, R., Meas, Y., Chainet, E., Ozil, P. 2003J. Appl. Electrochem.33373Google Scholar
  16. Joo-Yul, L., Jae-Woo, K., Min-Kyu, L., Hyun.Joon, S., Hyun-Tae, K., Su-Moon , P. 2004J. Electrochem. Soc.151C25Google Scholar
  17. Jae-Woo, K., Joo-Yul, L., Su-Moon, P. 2004Langmuir20459Google Scholar
  18. Danciu, V., Cosoveanu, V., Grunwald, E., Oprea, G. 2003Galvanotechnik94566Google Scholar
  19. Juhos, S., Mathe, E., Gruenwald, C., Varhelyi, G., fintu, S. 1992Galvnotechnik832282Google Scholar
  20. Mockute, D., Bernotiene, G. 1997J. Appl. Electrochem.27691Google Scholar
  21. Fletcher, S. 1983Electrochim. Acta28917Google Scholar
  22. Fletcher, S., Halliday, C.S., Gates, D., Westcott, M., Lwin, T., Nelson, G. 1983J. Electroanal. Chem.159267Google Scholar
  23. Gunawardena, G., Hills, G., Montenegro, I. 1982J. Electroanal. Chem.138241Google Scholar
  24. Nila, C., González, I. 1996J. Electroanal. Chem.401171Google Scholar
  25. Miranda-Hernández, M., González, I. 1997Electrochim. Acta.422295Google Scholar
  26. Oniciu, L., Muresan, L. 1991J. Appl. Electrochem.21565Google Scholar
  27. Franklin, T.C. 1987Surf. and Coat. Tech.30415Google Scholar
  28. Scharifker, B.R., Hills, G. 1983Electrochim. Acta28879Google Scholar
  29. Heerman, A., Tarallo, T. 1999J. Electroanal. Chem.47070Google Scholar
  30. Heerman, L., Tarallo, A. 1998J. Electroanal. Chem.451101Google Scholar
  31. Milchev, A., Heerman, L. 2003Electrochim. Acta482903Google Scholar
  32. Heerman, L., Tarallo, A. 2000Electrochem. Comm.285Google Scholar
  33. Arbid, M., Zhang, B., Lazarov, V., Stoychev, D., Milchev, A., Buess-Herman, C. 2001J. Electroanal. Chem.51067Google Scholar
  34. Bewick, A., Fleischmann, M., Thirsk, H.R. 1962Faraday Soc.582200Google Scholar
  35. Palomar-Pardavé, M., González, I., Soto, A.B., Arce, E.M. 1998J. Electroanal. Chem.443125Google Scholar
  36. Abyaneh, M.Y., Fleishmann, M. 1981J. Electroanal. Chem.119187Google Scholar
  37. Palomar-Pardavé, M., Miranda-Hernández, M., González, I., Batina, N. 1998Surf. Sci.39980Google Scholar
  38. Batina, N., Martínez-Ruíz, A., Palomar-Pardavé, M., Valenzuela-Benavides, J., Farías, M.H. 2003J. Phys. Chem.10711660Google Scholar
  39. Armstrong, R.D., Fleischmann, M., Thirsk, H.R. 1966J. Electroanal. Chem.11208Google Scholar
  40. Staikov, G., Lorenz, W.J., Bidevski, E. 1999Low-dimensional metal phases and nanostructuring of solid surfacesLipkowski, J.Ross, P.N. eds. “Imaging of Surfaces and Interfaces” WILEY-VCHNew York156Google Scholar
  41. Taguchi, S., Aramata, A. 1995J. Electroanal. Chem.396131Google Scholar
  42. Horángy, G., Aramata, A. 1997J. Electroanal. Chem.434201Google Scholar
  43. Aramata, A., Quaiyyum, Md.A., Balais, W.A., Atoguchi, T., Enyo, M. 1992J. Electroanal. Chem.338367Google Scholar
  44. Takahashi, S., Aramata, A., Nakamura, M., Hasebe, K., Taniguchi, M., Taguchi, S., Yamagishi, A. 2002Surf. Sci.51237Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ)QuerétaroMéxico

Personalised recommendations