Advertisement

Journal of Applied Electrochemistry

, Volume 35, Issue 2, pp 163–168 | Cite as

Improvement of electrochemical properties of PEO–LiTFSI electrolyte by incorporation of boroxine polymers with different backbone lengths

  • Ruoyuan TaoEmail author
  • Tatsuo Fujinami
Article

Abstract

A series of boroxine polymers (BP) with different backbone lengths were synthesized. Polymer electrolytes prepared by blending poly(ethylene oxide) (PEO) and BP with Li(N(SO 2CF3)2) (LiTFSI) were evaluated. Better performance was observed by addition of BP in the PEO based polymer electrolyte. The effect of the backbone length of BP on electrochemical properties of PEO–BP–LiTFSI electrolyte systems was investigated. Compared with the PEO–LiTFSI system, about five times higher ionic conductivity at low temperature and five times higher lithium ion transference number at 70 °C were achieved by incorporation of long chain BP in the electrolyte. Short chain BP exhibited outstanding performance in decreasing interfacial resistances on both anode and cathode surfaces. Good battery performance was also observed for these BP containing hybrid polymer electrolytes.

Keywords

Boroxine ring Discharge capacity Interfacial resistance Ionic conductivity Lithium ion transference number 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maccallum, J.R., Vincent, C.A. 1987Polymer Electrolyte ReviewsElsevier Applied Science PublishersLondon and New York351Vol. 1Google Scholar
  2. Allcock, H.R., Kuharcik, S.E., Reed, C.S., Napierala, M.E. 1996Macromolecules293384Google Scholar
  3. Tominaga, Y., Ohno, H. 1999Solid State Ionics124323Google Scholar
  4. Watanabe, M., Endo, T., Nishimoto, A., Miurs, K., Yanagida, M. 1999J. Power Sources81–82786Google Scholar
  5. Appetecchi, G.B., Dautzenberg, G., Scrosati, B. 1996J. Electrochem. Soc.1436Google Scholar
  6. Forsyth, M., MacFarlane, D.R., Bes, A., Adebahr, J., Jacobsson, P., Hill, A.J. 2002Solid State Ionics147203Google Scholar
  7. Lee, C.C., Wright, P.V. 1982Polymer23681Google Scholar
  8. Payne, D.R., Wright, P.V. 1982Polymer23690Google Scholar
  9. Weston, J.E., Steele, B.C.H. 1982Solid State Ionics775Google Scholar
  10. Dupon, R., Papke, B.L., Ratner, M.A., Whitmore, D.H., Shriver, D.F. 1982J. Am. Chem. Soc.1046247Google Scholar
  11. Chintapalli, S., Fresh, R. 1996Solid State Ionics86–88341Google Scholar
  12. Bandara, L.R.A.K., Dissanayake, M.A.K.L., Mellander, B.-E. 1998Electrochim. Acta431447Google Scholar
  13. Kumar, B., Scanlon, L.G. 1994J. Power Sources52261Google Scholar
  14. Mehta, M.A., Fujinami, T. 1998Solid State Ionics113–115187Google Scholar
  15. Mehta, M.A., Fujinami, T., Inoue, S., Matsushita, K., Miwa, T., Inoue, T. 2000Electrochim. Acta451175Google Scholar
  16. M.F. Lappert, J. Chem. Soc. (1958) 2790.Google Scholar
  17. Grimm, F.A., Barton, L., Porter, R.F. 1968Inorg. Chem.71309Google Scholar
  18. Evans, J., Vincent, C.A., Bruce, P.G. 1987Polymer282324Google Scholar
  19. Abraham, K.M., Jiang, Z., Carroll, B. 1997Chem. Mater.91978Google Scholar
  20. Borghini, M.C., Mastragostino, M., Passerini, S., Scrosati, B. 1995J. Electrochem. Soc.1422118Google Scholar
  21. Chen, C.H., Liu, J., Hammond, M., Jansen, A., Dees, D., Bloom, I., Vissers, D., Henriksen, G. 2001J. Power Sources97-98684Google Scholar
  22. Zhang, S.S., Angell, C.A. 1996J. Electrochem. Soc.1434047Google Scholar
  23. Delmas, C., Saadoune, I., Rougier, A. 1993J. Power Sources44595Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Materials Science, Faculty of EngineeringShizuoka UniversityHamamatsuJapan

Personalised recommendations