Advertisement

Journal of Applied Electrochemistry

, Volume 35, Issue 2, pp 199–206 | Cite as

Influence of oxide dopants on the wetting of doped graphite by cryolite/alumina melts

  • E. LaéEmail author
  • V. Sahajwalla
  • B.  Welch
  • M. Skyllas-Kazacos
Article

Abstract

In the aluminium smelting industry, the wetting of the electrolyte on the carbon anode is an important property associated with the onset of the anode effect. The effect of dopants on the wettability of the anode was investigated in this study. The carbon material selected was graphite. The composition of the cryolite/alumina melts varied between a very low alumina content and 6 wt.% alumina. The sessile drop approach was adopted to measure the contact angle between the melt and the graphite at 1030 °C. The influence of oxide dopants, chromium III oxide and alumina, in the graphite on the wettability was studied. The wettability on a pure graphite surface depends to a small extent on the liquid surface tension but mostly on the liquid–solid interfacial tension that varies with the concentration of alumina in the liquid. The wettability on an oxide doped graphite surface depends on the dissolution of the oxide in the melt that changes the liquid–solid interfacial tension. The alumina dissolution has a double effect on the liquid–solid interfacial tension: the chemical reaction as well as the change in the oxy-anions concentration at the interface decrease the interfacial tension.

Keywords

alumina–cryolite melts dissolution graphite oxide dopants wettability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grojtheim, K., Krohn, C., Malinovsky, C., Matiasovsky, M., Thonstadt, J. 1982Aluminium Electrolysis, Fundamentals of the Hall-Héroult Process2Aluminium-Verlag GmbHDüsseldorfGoogle Scholar
  2. J. Metson, R.G. Haverkamp, M.M. Hyland and J. Chen, ‘The anode effect revisited’, in P.A. Warrendale, (Ed.), Light Metals 2002 (The Minerals, Metals and Materials Society, 2002) pp. 239–244.Google Scholar
  3. Vogt, H. 1999J. Appl. Electrochem.29779Google Scholar
  4. Liu, Y.-X., Changsha, , Thonstad, J., Yang, J.-H. 1996Aluminium72836Google Scholar
  5. Y.-X. Liu, H.-M. Xiao and G.-C. Xion, ‘The inhibition of anode effect in aluminium electrolysis process by anode dopants: a laboratory study’, in Elwin L. Rooy, (Ed.), Light Metals 1991 (The Minerals, Metals and Materials Society, 1991) pp. 489–494.Google Scholar
  6. Qiu, Z.X., Bin, Q.X., You, K.W. 1983Aluminium59670Google Scholar
  7. Matiasovsky, K., Paucirova, M., Malinovsky, M. 1963Chemickae zvesti.17181188Google Scholar
  8. Belyaev, A.I., Zhemchuzina, E.A., Gerasimov, A.D. 1956J. Appl. Chem.291979Google Scholar
  9. Antipin, L.N., Valentin, S.F., Salnikov, Ia. A. 1958J. Appl. Chem.311091Google Scholar
  10. Z.X. Qiu, C.B. Wei and M.J. Chang, ‘Studies of anode effect in aluminium electrolysis’, in J.E. Andersen (Ed.), Light Metals 1982 (Metallurgical Society AIME Warrendale, 1982) pp. 279–293.Google Scholar
  11. E.A. Zhemchuzina, Izv. Akad. Nauk. SSSR Metally 3 (1965) 18.Google Scholar
  12. G. Yao, Z. Qiu and Z. Zhang, ‘Studies of wettability of carbon anode including Li2CO3 in aluminium electrolysis’, in Subodh K. Das (Ed.), Light Metals 1993 (The Minerals, Metals and Materials Society, 1993) pp. 595–597.Google Scholar
  13. Yang, J., Chen, X., Li, Q., Liu, Y., Ying, E., Chen, J. 1999J. Cent. South. Univ. Technol.30555Google Scholar
  14. P. Meunier, B. Welch and M. Skyllas Kazacos, ‘An electrochemical study of the anode effect in the aluminium smelting process’, in J.Anjier (Ed.), Light Metals 2001 (The Minerals, Metals and Materials Society, 2001) pp. 337–341.Google Scholar
  15. Wu, C., Sahajwalla, V. 1998Met. Trans. B29B471Google Scholar
  16. Fernandez, R., Østvold, T. 1989Acta Chemica Scandinavica43151Google Scholar
  17. Bratland, D., Ferro, C.M., Østvold, T. 1983Acta Chemica Scandinavica37487Google Scholar
  18. H. Kvande, ‘The structure of alumina dissolved in cryolite melts’, in R.E. Miller (Ed.), Light Metals 1986 (Warrendale, 1986) pp. 451–459.Google Scholar
  19. M. Rolin and C. Bernard, Bull. Soc. Chem. France (1963) 1035.Google Scholar
  20. Rolin, M., Gallay, J.J. 1962Electrochimica Acta7153Google Scholar
  21. Sterten, A., Skar, O. 1988Some binary Na3AlF6-MxOy phase diagramsAluminium641051Google Scholar
  22. Aksay, I.A., Hoge, C.E., Pask, J.A. 1974J. Phy. Chem.781178Google Scholar
  23. Defay, R., Prigogine, I., Bellemans, A., Everett, D.H. 1966Surface Tension and Adsorption1LongmansLondonGoogle Scholar
  24. Eustathopoulos, N., Nicholas, M.G., Drevet, B. 1999‘Wettability at High Temperatures’Pergamon Materials SeriesOxfordGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • E. Laé
    • 1
    • 3
    Email author
  • V. Sahajwalla
    • 2
  • B.  Welch
    • 1
  • M. Skyllas-Kazacos
    • 1
  1. 1.School of Chemical Engineering and Industrial ChemistryThe University of New South WalesSydneyAustralia
  2. 2.School of Materials Science and EngineeringThe University of New South WalesSydneyAustralia
  3. 3.Pechiney CRVParc Economique Centr’AlpCedexFrance

Personalised recommendations