Journal of Applied Electrochemistry

, Volume 35, Issue 2, pp 151–156 | Cite as

Synthesis and electrochemical properties of layered LiNi1/2Mn1/2O2prepared by coprecipitation

  • Y.-K. SunEmail author
  • Y.C. Bae
  • S.-T. Myung


Spherical LiNi1/2Mn1/2O 2 powders were synthesized from LiOH . H2O and coprecipitated metal hydroxide, (Ni1/2Mn1/2)(OH)2. The average particle size of the powders was about 10 μm and the size distribution was quite narrow due to the homogeneity of the metal hydroxide, (Ni1/2Mn1/2)(OH)2. The tap-density of the LiNi1/2Mn1/2O2 powders was approximately 2.2 g cm−3, which is comparable to the tap-density of commercial LiCoO2. The LiNi1/2Mn1/2 O2electrode delivered a discharge capacity of 152, 163, 183, and 189 mA h g−1 in the voltage ranges of 2.8–4.3, 2.8–4.4, 2.8–4.5, and 2.8–4.6 V, respectively, with good cyclability. Furthermore, Al(OH)3-coated LiNi1/2Mn1/2O2exhibited excellent cycling behavior and rate capability compared to the pristine electrode.


Al(OH)3-coating cathode materials coprecipitation layered structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Rossen, E., Jones, C.D.W., Dahn, J.R. 1992Solid State Ionics57311Google Scholar
  2. Spahr, M.E., Novak, P., Schnyder, B., Hass, O., Nesper, R. 1998J. Electrochem. Soc.1451113Google Scholar
  3. T. Ohzuku and Y. Makimura, Chem. Lett. (2001) 744.Google Scholar
  4. Lu, Z., MacNeil, D.D., Dahn, J.R. 2001Electrochem. Solid-State Lett.4A191Google Scholar
  5. Arachi, Y., Kobayashi, H., Emura, S., Nakata, Y., Tanaka, M., Asai, T. 2003Chem. Lett.3260Google Scholar
  6. Yoon, W.S., Paik, Y., Balasubramanian, M., McBreen, J., Grey, C.P. 2002Electrochem. Solid-State Lett.5A262Google Scholar
  7. Kim, J.S., Johnson, C.S., Thackeray, M.M. 2002Electrochem. Commun.4205Google Scholar
  8. Kang, S.H., Kim, J., Stoll, Me.E., Abraham, D., Sun, Y.-K., Amine, K. 2002J. Power Sources11241Google Scholar
  9. Park, S.H., Oh, S.W., Kang, S.G., Myung, S.T., Sun, Y.K. 2004Chem. Lett.332Google Scholar
  10. Jouanneau, S., Eberman, K.W., Krause, L.J., Dahn, J.R. 2003J. Electrochem. Soc.150A1637Google Scholar
  11. Sun, Y.-K., Lee, Y.-S., Yoshio, M., Amine, K. 2002Electrochem. Solid-State Lett.5A99Google Scholar
  12. Cho, J., Kim, Y.J., Park, B. 2000Chem. Mater.123788Google Scholar
  13. Chobelt, A., Shiao, H.C., Lin, H.-P., Salomon, M., Manivannan, V. 2001Electrochem. Solid-State Lett.4A65Google Scholar
  14. Joint Committee on Powder Diffraction Standards, File no. 14-0117Google Scholar
  15. Ying, J., Wan, C., Jiang, C., Li, Y. 2001J. Power Sources9978Google Scholar
  16. Roisnel, T., Rodriguez-Carjaval, J. 2000Fullprof ManualInstitut Laue-LangevinGrnobleGoogle Scholar
  17. Sun, Y.-K., Jin, S.-H. 1998J. Mater. Chem.82399Google Scholar
  18. Sun, Y.K., Hong, K.J., Prakash, Jai, Amine, K. 2002Electrochem. Commun.4344Google Scholar
  19. Zheng, Z., Tang, Z., Zhang, Z., Shen, W., Lin, Y. 2002Solid State Ionics148317Google Scholar
  20. J.-S. Kim, C.S. Johnson, J.T. Vaughey, S.A. Hackney, K.A. Walz, W.A. Zeltner, M.Z. Anderson and M.M. Thackeray, J. Electrochem. Soc. (in press).Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Center for Information and Communication MaterialsHanyang UniversitySeoulRepublic of Korea
  2. 2.VK CorporationPyongtaek-City, Kyonggi-DoRepublic of Korea

Personalised recommendations