Journal of Applied Electrochemistry

, Volume 35, Issue 2, pp 185–191 | Cite as

Comparison of Ti/BDD and Ti/SnO2–Sb2O5 electrodes for pollutant oxidation

  • Xueming Chen
  • Furong Gao
  • Guohua ChenEmail author


Anodic oxidation is a promising process for degrading toxic and biologically refractory organic pollutants present in wastewater treatment. Proper selection of electrodes is the key to reach effective and economic operation. In this study, two types of electrodes, i.e. the recently developed Ti/BDD and Ti/SnO2–Sb2O5, which is generally believed to be superior to the conventional electrodes, were compared under the same conditions. It was found that the Ti/BDD electrode could mineralize both phenol and reactive dyes effectively. But the Ti/SnO2–Sb2O5 electrode could only mineralize phenol. When oxidizing more refractory reactive dyes, it demonstrated very poor activity. In addition, the Ti/BDD electrode had a service life of 264 h in an accelerated life test, but the Ti/SnO2–Sb2O5 was irreversibly damaged within several seconds. The direct experimental comparison in the present study indicates that the Ti/BDD electrode is much better than the Ti/SnO2–Sb2O5 electrode for pollutant oxidation.


anodic film dyes electro-oxidation phenol reactive dyes wastewater 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Marincic, L., Leitz, F.B. 1978J. Appl. Electrochem.8333Google Scholar
  2. Kannan, N., Sivadurai, S.N., Berchmans, L.J., Vijayavalli, R. 1995J. Environ. Sci. Health. A302185Google Scholar
  3. Awad, Y.M., Abuzaid, N.S. 1997J. Environ. Sci. Health A321393Google Scholar
  4. Kirk, D.W., Sharifian, H., Foulkes, F.R. 1985J. Appl. Electrochem.15285Google Scholar
  5. Ho, C.C., Chan, C.Y., Khoo, K.H. 1986J. Chem. Tech. Biotechnol.367Google Scholar
  6. Feng, J., Houk, L.L., Johnson, D.C. 1995J. Electrochem. Soc.1423626Google Scholar
  7. Cossu, R., Polcaro, A.M., Lavagnolo, M.C., Mascia, M., Palmas, S., Renoldi, F. 1998Environ. Sci. Technol.323570Google Scholar
  8. Polcaro, A.M., Palmas, S., Renoldi, F., Mascia, M. 1999J. Appl. Electrochem.29147Google Scholar
  9. Kotz, R., Stucki, S., Carcer, B. 1991J. Appl. Electrochem.2114Google Scholar
  10. Stucki, S., Kotz, R., Carcer, B., Suter, W. 1991J. Appl. Electrochem.2199Google Scholar
  11. Comninellis, Ch. 1992Trans Ichem E. Part B70219Google Scholar
  12. Pulgarin, C., Adler, N., Peringer, P., Comninellis, Ch. 1994Wat. Res.28887Google Scholar
  13. Rodgers, J.D., Jedral, W., Bunce, N.J. 1999Environ. Sci. Technol.331453Google Scholar
  14. Murphy, O.J., Hitchens, G.D., Kaba, L., Verostko, C.E. 1992Wat. Res.26443Google Scholar
  15. Naumczyk, J., Szpyrkowicz, L., Grandi, F.Z. 1996Wat. Sci. Tech.3417Google Scholar
  16. Gattrell, M., Kirk, D.W. 1990Can. J. Chem. Eng.68997Google Scholar
  17. Szpyrkowicz, L., Naumczyk, J., Zilio-Grandi, F. 1994Toxicolog. Environ. Chem.44189Google Scholar
  18. Rajalo, G., Petrovskaya, T. 1996Environ. Technol.17605Google Scholar
  19. Rao, N.N., Somasekhar, K.M., Kaul, S.N., Szpyrkowicz, L. 2001J. Chem. Tech. Biotechnol.761124Google Scholar
  20. O. Weres and M.R. Hoffmann, US Patent 5,419,824 (1995).Google Scholar
  21. Kesselman, J.M., Weres, O., Lewis, N.S., Hoffmann, M.R. 1997J. Phys. Chem. B1012637Google Scholar
  22. Vincent, C.A., Weston, D.G.C. 1972J. Electrochem. Soc.119518Google Scholar
  23. Aboaf, J.A., Marcotte, V.C. 1973J. Electrochem. Soc.120701Google Scholar
  24. Jarzebski, Z.M., Marton, J.P. 1976J. Electrochem. Soc.123199CGoogle Scholar
  25. Hsu, Y.S., Ghandhi, S.K. 1979J. Electrochem. Soc.1261434Google Scholar
  26. Hsu, Y.S., Ghandhi, S.K 1980J. Electrochem. Soc.1271592Google Scholar
  27. Hsu, Y.S., Ghandhi, S.K 1980J. Electrochem. Soc.1271595Google Scholar
  28. Nanthakumar, A., Armstrong, N.R 1988Semiconductor ElectrodesFinklea, H.O. eds. ‘Studies in Physical and Theoretical Chemistry; 55′ Vol. 203Elsevier Science Publishing Company IncNew YorkGoogle Scholar
  29. Grimm, F., Bessarabov, D., Maier, W., Storck, S., Sanderson, R.D. 1998Desalination115295Google Scholar
  30. Swain, G.M. 1994Adv. Mater.6388Google Scholar
  31. Tenne, R, Patel, K., Hashimoto, K., Fujishima, A. 1999J. Electroanal. Chem.347409Google Scholar
  32. J.J. Carey, J.C.S. Christ and S.N. Lowery, US Patent 5,399,247 (1995).Google Scholar
  33. Fryda, M., Herrmann, D., Schafer, L., Klages, C.P., Perret, A., Haenni, W., Comninellis, Cg., Gandini, D. 1999New Diam. Front. C. Tec.9229Google Scholar
  34. Iniesta, J., Michaud, P.A., Panizza, M., Cerisola, G., Aldaz, A., Comninellis, Ch. 2001Electrochem. Acta463573Google Scholar
  35. Perret, A., Haenni, W., Skinner, N., Tang, T.M., Gandini, D., Comninellis, Ch., Correa, B., Foti, G. 1999Diam. Relat. Mater.8820Google Scholar
  36. Gandini, D., Mahe, E., Michaud, P.A., Haenni, W., Perret, A., Comninellis, Ch. 2000J. Appl. Electrochem.301345Google Scholar
  37. Iniesta, J., Michaud, P.A., Panizza, M., Comninellis, Ch. 2001Electrochem. Commun.3346Google Scholar
  38. Panizza, M., Michaud, P.A., Cerisola, G., Comninellis, Ch. 2001J. Electroanal. Chem.507206Google Scholar
  39. Rodrigo, M.A., Michaud, P.A., Duo, I., Panizza, M., Cerisola, G., Comninellis, Ch. 2001J. Electrochem. Soc.148D60Google Scholar
  40. Boye, B., Michaud, P.A., Marselli, B., Dieng, M.M., Brillas, E., Comninellis, Ch. 2002New Diam. Front. C. Tec.1263Google Scholar
  41. Boye, B., Michaud, P.A., Marselli, B., Dieng, M.M., Brillas, E., Comninellis, Ch. 2002New Diam. Front. C. Tec.1273Google Scholar
  42. Montilla, F., Michaud, P.A., Morallon, E., Vazquez, J.L., Comninellis, Ch. 2002Electrochim. Acta473509Google Scholar
  43. Bellagamba, R., Michaud, P.A., Comninellis, Ch., Vatistas, N. 2002Electrochem. Commun.4171Google Scholar
  44. Chen, X.M., Chen, G.H., Yue, P.L. 2003Chem. Eng. Sci.58995Google Scholar
  45. Chen, X.M., Chen, G.H., Yue, P.L. 2003Environ Sci Technol.375201Google Scholar
  46. Chen, X.M., Chen, G.H. 2004J. Electrochem. Soc.151B214Google Scholar
  47. Chen, X.M., Chen, G.H., Yue, P.L. 2001J. Phys. Chem. B.1054623Google Scholar
  48. Chen, G.H., Chen, X.M., Yue, P.L. 2002J. Phys. Chem. B1064364Google Scholar
  49. Hutchings, R., Muller, K., Kotz, F., Stucki, S. l984J. Mater. Sci.193987Google Scholar
  50. Correa, B., Comninellis, Ch., Battisti, A.D. 1996J. Appl. Electrochem.26683Google Scholar
  51. Mengoli, G., Daolio, S., Musiani, M.M. 1980J. Appl. Electrochem.10459Google Scholar
  52. Comninellis, Ch., Pulgarin, C. 1991J. Appl. Electrochem.21703Google Scholar
  53. Tabar, N.B., Savall, A. l998J. Electrochem. Soc.1453427Google Scholar
  54. Marselli, B., Garcia-Gomez, J., Michaud, P.A., Rodrigo, M.A., Comninellis, Ch. 2003J. Electrochem. Soc.150D79Google Scholar
  55. Gherardini, L., Michaud, P.A., Panizza, M., Comninellis, Ch., Vatistas, N. 2001J. Electrochem. Soc.148D78Google Scholar
  56. Correa, B., Comninellis, Ch., Battisti, A.D. 1997J. Appl. Electrochem.27970Google Scholar
  57. Lipp, L., Pletcher, D. 1997Electrochim. Acta421091Google Scholar
  58. I. Malkin, In Precious Metals, Proceedings of the International Precious Metals Institute Conference, 6th Meeting; 1982, 219.Google Scholar
  59. Hine, F., Yasuda, M., Noda, T., Yoshida, T., Okuda, J. 1979J. Electrochem. Soc.1261439Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.School of Environmental EngineeringZhejiang UniversityHangzhouChina
  2. 2.Department of Chemical Engineering,Hong Kong University of Science & TechnologyClear Water Bay, KowloonChina

Personalised recommendations