Skip to main content
Log in

Enhanced cyclability of LiCoO2 cathodes coated with alumina derived from carboxylate–alumoxanes

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

LiCoO2 cathodes coated with Al2O3 generated from carboxylate–alumoxanes have demonstrated sustainable extended cyclability. The carboxylate–alumoxanes were prepared by reacting boehmite with acetic and substituted acetic acids. TEM images of the coated powders revealed that the coatings were compact and had an average thickness of about 20nm. XRD data on the coated materials indicated minor changes in the values of the lattice parameters, suggesting the formation of solid solutions of the composition LiAl y Co1– y O2 on the surface during calcination. ESCA depth profiles of the constituent elements in the coated particles support this theory. R-factor values from XRD analysis and galvanostatic cycling studies suggest that a 1.0 wt.% coating formed from a (methoxyethoxy)acetate-alumoxane enhanced the cyclability by a factor of 12. The improved performance is attributed to suppression of the cycle-limiting phase transitions accompanying the charge–discharge processes. Being without environmentally hazardous organic chemicals and by-products, the coating procedure based on carboxylate–alumoxanes is a clean and benign process for industrial exploitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • L.D. Dyer B.S. Borie SuffixJr. G.P. Smith (1954) J. Am. Chem. Soc. 76 1499

    Google Scholar 

  • K. Mizushima P.C. Jones P.J. Wiseman J.B. Goodenough (1980) Mater. Res. Bull. 15 783

    Google Scholar 

  • J.B. Goodenough K. Mizushima T. Takeda (1980) Jpn. J. Appl. Phys. 19 305

    Google Scholar 

  • J.N. Reimers J.R. Dahn (1992) J. Electrochem. Soc. 139 2091

    Google Scholar 

  • T. Ohzuku A. Ueda (1994) J. Electrochem. Soc. 141 2972

    Google Scholar 

  • H.F. Wang Y.I. Jang B.Y. Huang D.R. Sadoway Y.M. Chiang (1999) J. Electrochem. Soc. 146 473

    Google Scholar 

  • E. Plichita S. Slane M. Uchiyama M. Salomon D. Chua W.B. Ebner H.W. Lin (1989) J. Electrochem. Soc. 136 1865

    Google Scholar 

  • G.G. Amatucci J.M. Tarascon L.C. Klein (1996) Solid State Ion. 83 167

    Google Scholar 

  • S. Lavasseur M. Menetrier E. Suard C. Delmas (2000) Solid State Ion. 128 11

    Google Scholar 

  • J. Cho Y.J. Kim B. Park (2000) Chem. Mater. 12 3788

    Google Scholar 

  • J. Cho Y.J. Kim B. Park (2001) J. Electrochem. Soc. 148 A1110

    Google Scholar 

  • J. Cho Y.J. Kim T.-J. Kim B. Park (2001) Angew. Chem. Int. Ed. 40 3367

    Google Scholar 

  • L. Liu Z. Wang H. Li L. Chen X. Huang (2002) Solid State Ion 152–153 341

    Google Scholar 

  • A.M. Kannan L. Rabenberg A. Manthiram (2003) Electrochem. Solid-State Lett. 6 A16

    Google Scholar 

  • M. Mladenov R. Stoyanova E. Zhecheva S. Vassilev (2001) Electrochem. Commun. 3 410

    Google Scholar 

  • Z. Wang C. Wu L. Liu F. Wu L. Chen X. Huang (2002) J. Electrochem. Soc. 149 A466

    Google Scholar 

  • J. Cho C.-S. Kim S.-I. Yoo (2000) Electrochem. Solid-State Lett. 3 362

    Google Scholar 

  • E. Endo T. Yasuda A. Kita K. Yamamura K. Sekai (2000) J. Electrochem. Soc. 147 1291

    Google Scholar 

  • G.T.K. Fey H.Z. Yang T.P. Kumar S.P. Naik A.S.T. Chiang D.C. Lee J.R. Lin (2004) J. Power Sources 132 172

    Google Scholar 

  • G.T.K. Fey, Z.X. Weng, J.G. Chen, C.Z. Lu, T.P. Kumar, S.P. Naik and A.S.T. Chiang, Mater. Lett. (Communicated).

  • G.T.K. Fey Z.X. Weng J.G. Chen C.Z. Lu T.P. Kumar S.P. Naik A.S.T. Chiang D.C. Lee J.R. Lin (2004) J. Appl. Electrochem. 34 715

    Google Scholar 

  • R.L. Callender C.J. Harlan N.M. Shapiro C.D. Jones D.L. Callahan M.R. Wiesner D.B. MacQueen R. Cook A.R. Barron (1997) Chem. Mater. 9 2418

    Google Scholar 

  • C.C. Landry N. Pappe M.R. Mason A.W. Apblett A.N. Tyler A.N. MacInnes A.R. Barron (1995) J. Mater. Chem. 5 331

    Google Scholar 

  • R.L. Callender A.R. Barron (2000) Adv. Mater. 12 734

    Google Scholar 

  • C.J. Harlan A. Kareiva D.B. MacQueen R. Cook A.R. Barron (1997) Adv. Mater. 9 68

    Google Scholar 

  • H.J. Kweon S.J. Kim D.G. Park (2000) J. Power Sources 88 255

    Google Scholar 

  • J. Kim P. Fulmer A. Manthiram (1999) Mater. Res. Bull. 34 571

    Google Scholar 

  • R.J. Gummow M.M. Thackeray W.I.F. David S. Hull (1992) Mater. Res. Bull. 27 327

    Google Scholar 

  • J.N. Reimers E. Rossen C.D. Jones J.R. Dahn (1993) Solid State Ion. 61 335

    Google Scholar 

  • J.R. Dahn U. Sacken Particlevon C.A. Michel (1990) Solid State Ion. 44 87

    Google Scholar 

  • S.-T. Myung N. Kumagai S. Komaba H.-T. Chung (2001) Solid State Ion. 139 47

    Google Scholar 

  • G. Ceder Y.-M. Chiang D.R. Sadoway M.K. Aydinol Y.-I. Jang B. Huang (1998) Nature 392 694 Occurrence Handle10.1038/33647 Occurrence Handle1:CAS:528:DyaK1cXjtVWhtbY%3D

    Article  CAS  Google Scholar 

  • Y.-I. Jang B. Huang H. Wang G.R. Maskaly G. Ceder D.R. Sadoway Y.-M. Chiang H. Liu H. Tamura (1999) J. Power Sources 81–82 589

    Google Scholar 

  • W.S. Yoon K.K. Lee K.B. Kim (2001) J. Power Sources 97–98 303

    Google Scholar 

  • S. Castro-Garcia A. Castro-Couceiro M.A. Senaris-Rodriguez F. Soulette C. Julien (2003) Solid State Ion. 156 15

    Google Scholar 

  • T. Ohzuku A. Ueda M. Kouguchi (1995) J. Electrochem. Soc. 142 4033

    Google Scholar 

  • Y.-I. Jang B. Huang H. Wang D.R. Sadoway G. Ceder Y.-M. Chiang H. Liu H. Tamura (1999) J. Electrochem. Soc. 146 862

    Google Scholar 

  • M.K. Aydinol A.K. Kohan G. Ceder K. Cho J. Joanopoulos (1997) Phys. Rev. B 56 1354

    Google Scholar 

  • G.A. Nazri A. Rougier K.F. Kia (1997) Mater. Res. Soc. Symp. Proc. 435 635

    Google Scholar 

  • L.H. Vlack Particlevan (1964) ‘Physical Ceramics for Engineers’ Addison-Wesley Publishing Reading, MA

    Google Scholar 

  • K. Dokko M. Nishizawa S. Horikoshi T. Itoh M. Mohamedi I. Uchida (2000) Electrochem. Solid-State Lett. 3 125

    Google Scholar 

  • L. Kavan M. Gratzel (2002) Electrochem. Solid-State Lett. 5 A39

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Ting-Kuo Fey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fey, G.TK., Chen, JG. & Kumar, T.P. Enhanced cyclability of LiCoO2 cathodes coated with alumina derived from carboxylate–alumoxanes. J Appl Electrochem 35, 177–184 (2005). https://doi.org/10.1007/s10800-004-5822-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-004-5822-7

Keywords

Navigation