Advertisement

Journal of Applied Electrochemistry

, Volume 35, Issue 2, pp 117–122 | Cite as

A low external temperature method for synthesis of active electrode materials for Li batteries – Part A: Synthesis of pure manganese spinel

  • S. Uzunova
  • B. Banov
  • A. MomchilovEmail author
  • S. Vassilev
  • T. Stankulov
  • I. Uzunov
Article

Abstract

A low external temperature method (LETM) of active electrode material synthesis for lithium ion batteries has been proposed. The method consists of a two-step process, which is comprised of drying fine droplets of a solution of the starting compound in a liquid drying agent at 200 °C, followed by calcination of the obtained precursor in a fluidised bed at a furnace temperature of 300 °C. The method prevents uncontrolled growth of particles during the initial thermal pre-treatment and the final firing process. Lithium manganese spinel has been selected for describing the proposed LETM of synthesis. The properties of the spinel obtained by LETM are compared with those of a spinel obtained by the classical immobilised solid state synthesis at 750 °C. On electrochemical cycling, the capacity loss after 100 cycles of the LETM spinel at 11% is significantly lower than that for the spinel prepared by solid state methods (21.5%). However, only 3% difference is seen in the total integral capacity over the 100 cycles between spinels prepared by the different methods.

Keywords

fluidised bed intercalation compounds lithium batteries low temperature synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ohzuku, T., Kitagawa, M., Hirai, T. 1990J. Electrochem. Soc.137769Google Scholar
  2. Rimers, J.N., Dahn, J.R., Sacken, U. 1993J. Electrochem. Soc.1402972Google Scholar
  3. Ohzuku, T., Ueda, A. 1994J. Electrochem. Soc.1412752Google Scholar
  4. Ohzuku, T., Ueda, A., Nagayama, M. 1993J. Electrochem. Soc.1401862Google Scholar
  5. Hwang, K.T., Um, W.S., Lee, H.S., Song, J.K., Chung, K.W. 1998J. Power Sources74169Google Scholar
  6. Tsumura, T., Shimizu, A., Inagaki, M. 1993J. Mat. Chem.14995Google Scholar
  7. Li, Y., Wan, C., Wu, Y., Jiang, C., Zhu, Y. 2000J. Power Sources85294Google Scholar
  8. Bardoux, P., Tarascon, J.M., Shokoochi, F.K. 1991J. Solid State Chem.94185Google Scholar
  9. S.T. Myung, N. Kumagai and S. Komaba, ITE Letters on Batteries, New Technology & Medicine, 1(2000)B18(38).Google Scholar
  10. Yoon, W.S., Kim, K.B. 1999J. Power Sources81-82517Google Scholar
  11. Yoshio, M., Inoue, S., Hyakutake, M., Piao, G., Nakamura, H. 1991J. Power Sources34147Google Scholar
  12. Hia, Y., Takeshige, H., Noguchi, H., Yoshio, M. 1993J. Power Sources5661Google Scholar
  13. Liu, W., Kowal, K., Farrington, G.C. 1996J. Electrochem. Soc.1433590Google Scholar
  14. Manev, V., Banov, B., Momchilov, A., Nasalevska, A. 1995J. Power Sources5799Google Scholar
  15. Manev, V., Momchilov, A., Kozawa, A. 1995Progress in Battery & Battery Materials,14105Google Scholar
  16. Richardson, T.J., Wen, S.J., Striebel, K.A., Ross, P.N.,Jr., Cairns , E.J. 1997Meter. Res. Bull.32609Google Scholar
  17. Julien, C., Massot, M. 2003Mater. Sci. Eng.97217Google Scholar
  18. Momchilov, A., Manev, V., Nassalevska, A., Kozawa , A. 1993J. Power Sources41305Google Scholar
  19. Liu, W., Kowal, K., Farrington, G. 1998J. Electrochem. Soc.145459Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • S. Uzunova
    • 1
  • B. Banov
    • 1
  • A. Momchilov
    • 1
    Email author
  • S. Vassilev
    • 1
  • T. Stankulov
    • 1
  • I. Uzunov
    • 2
  1. 1.Institute of Electrochemistry and Energy Systems (former CLEPS)Bulgarian Academy of SciencesSofiaBulgaria
  2. 2.Institute of General and Inorganic ChemistryBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations