Skip to main content

Students attitudes towards technology

Abstract

Technology is more present than ever. Young people are interested in technological products, but their opinions on education and careers in technology are not particularly positive (Johansson in Mathematics, science & technology education report. European Round Table of Industrials, Brussel, 2009). If we want to stimulate students’ attitudes towards technology we need to have a better understanding of the factors which determine attitudes. Different studies (e.g. Volk and Yip in Int J Technol Des Educ 9:57–71, 1999; Jones et al. in Sci Educ 84(2):180–192, 2000; George in Int J Sci Educ 28(6):571–589, 2006; Salminen-Karlsson in Int J Sci Educ 29(8):1019–1033, 2007) have proven that students’ characteristics correlate with their attitudes towards technology. As these studies often focus on effects on a specific aspect of attitude; the total effect cannot be interpreted correctly because attitude is a multi-dimensional concept (Osborne et al. in Int J Sci Educ 23(5):441–467, 2003). This study focuses upon six aspects of attitude namely: interest, career aspirations, boredom, consequences, difficulty and gender issues. Therefore a multivariate model has been set up. This allows us to answer the main research question: What is the predictive power of students’ characteristics with regard to aspects of their attitudes towards technology? The revalidated version of the Pupils Attitude Towards Technology instrument (Ardies et al. in Des Technol Educ 18(1):8–19, 2013) was used in a large (n = 2,973) scale investigation of 12–14 year old students (Grade 1 and Grade 2 of secondary education). Given the multilevel nature of the data and that students are allocated to specific teachers, we analysed the data with a multivariate multilevel approach. The results of the study show a decline in interest in technology from the first to the second grade of secondary education. This finding appears to be stronger for girls. Interest in technology is significantly positively related to the amount of time that technology is taught for, as well as to the teacher. Parents have a positive influence on several aspects of attitude to technology when mothers and/or fathers have a profession related to technology. Equally, the presence of technological toys at home is a significantly positive characteristic. As the results confirmed previous, fragmented studies in related disciplines like science education, this study contributes to the wider body of knowledge concerning students’ attitudes towards technology and how this can be investigated.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Angell, C., Guttersrud, Ø., Henriksen, E. K., & Isnes, A. (2004). Physics: Frightful, but fun. Pupils’ and teachers’ views of physics and physics teaching. Science Education, 88(5), 683–706.

    Article  Google Scholar 

  2. Ardies, J., De Maeyer, S., & Gijbels, D. (2013). Reconstructing the Pupils Attitude Towards Technology-survey. Design and Technology Education: An International Journal, 18(1), 8–19.

    Google Scholar 

  3. Bame, E., Dugger, W., de Vries, M., & McBee, J. (1993). Pupils’ attitudes toward technology—PATT-USA. Journal of Technology Studies, 19(1), 40–48.

    Google Scholar 

  4. Barkatsas, A., Kasimatis, K., & Gialamas, V. (2009). Learning secondary mathematics with technology: Exploring the complex interrelationship between students’ attitudes, engagement, gender and achievement. Computers & Education, 52(2), 562–570.

    Article  Google Scholar 

  5. Barmby, P., Kind, P. M., & Jones, K. (2008). Examining changing attitudes in secondary school science. International Journal of Science Education, 30(8), 1075–1093.

    Article  Google Scholar 

  6. Bast, C. (1991). Weibliche Autonomie und Identität: Unters. Über die Probleme von Mädchenerziehung heute. Weinheim: Beltz Juventa.

    Google Scholar 

  7. Baumert, J., & Geiser, H. (1996). Alltagserfahrungen, Fernsehverhalten, Selbstvertrauen, sachkundiges Wissen und naturwissenschaftlich-technisches Problemlösen im Grundschulalter. North Carolina: Crosstel.

    Google Scholar 

  8. Beaton, A. E., Mullis, I. V. S., Martin, M. O., Gonzalez, E. J., Kelly, D. L., & Smith, T. A. (1996). Mathematics achievement in the middle school years: IEA’s Third International Mathematics and Science Study (TIMSS). Chestnut Hill, MA: Center for the Study of Testing, Evaluation, and Educational Policy, Boston College.

    Google Scholar 

  9. Becker, K. H., & Maunsaiyat, S. (2002). Thai students’ attitudes and concepts of technology. Journal of Technology Education, 13(2), 6–19.

    Google Scholar 

  10. Beinke, L., & Richter, H. (1993). Der Modellversuch Förderung naturwissenschaftlicher Bildung für Mädchen in der Realschule in NRW. In L. Beinke & H. Richter (hrsg.), Mädchen im Physikunterricht (pp. 1–26). Bad Heilbrunn.

  11. Berliner, D. C. (2002). Comment: Educational research: The hardest science of all. Educational Researcher, 31(8), 18–20.

    Article  Google Scholar 

  12. Cannon, R. K., & Simpson, R. D. (1985). Relationships among attitude, motivation, and achievement of ability grouped, seventh-grade, life science students. Science Education, 69(2), 121–138.

    Article  Google Scholar 

  13. Catsambis, S. (1995). Gender, race, ethnicity, and science education in the middle grades. Journal of Research in Science Teaching, 32(3), 243–257.

    Article  Google Scholar 

  14. Cohen, L., Manion, L., & Morrison, K. (2007). Research methods in education (6th ed.). Oxford: Routledge.

    Google Scholar 

  15. De Maeyer, S., van den Bergh, H., Rymenans, R., Van Petegem, P., & Rijlaarsdam, G. (2010). Effectiveness criteria in school effectiveness studies: Further research on the choice for a multivariate model. Educational Research Review, 5(1), 81–96.

    Article  Google Scholar 

  16. de Vries, M. J. (1988). Proefschrift: Techniek in het natuurkunde-onderwijs. Eindhoven: Technische Universiteit Eindhoven.

    Google Scholar 

  17. de Vries, M. J. (2005). Teaching about technology. An Introduction to the Philosophy of Technology for NON-philosophers. Dordrecht: Springer.

    Google Scholar 

  18. Elvstrand, H., Hellberg, K., & Hallstrom, J. (2012). Technology and gender in early childhood education: How girls and boys explore and learn technology in free play in Swedish schools. Paper presented at the PATT 26 conference, Stockholm, Sweden.

  19. Francis, L. J., & Greer, J. E. (1999). Measuring attitude towards science among secondary school students: The affective domain. Research in Science & Technological Education, 17(2), 219–226.

    Article  Google Scholar 

  20. Gardner, P. (1998). The development of males and females interest in science and technology. In L. Hoffman, A. Krapp, A. Renninger & J. Baumert (Eds.), Interest and learning, proceedings of Seeon conference on interest and gender (pp. 41–57). Kiel.

  21. George, R. (2000). Measuring change in students’ attitudes toward science over time: An application of latent variable growth modeling. Journal of Science Education and Technology, 9(3), 213–225.

    Article  Google Scholar 

  22. George, R. (2006). A cross-domain analysis of change in students’ attitudes toward science and attitudes about the utility of science. International Journal of Science Education, 28(6), 571–589.

    Article  Google Scholar 

  23. George, R., & Kaplan, D. (1998). A structural model of parent and teacher influences on science attitudes of eighth graders: Evidence from NELS: 88. Science Education, 82(1), 93–109.

    Article  Google Scholar 

  24. Goldstein, H. (2011). Multilevel statistical models (4th ed.). London: Wiley.

    Google Scholar 

  25. Hattie, J. (2008). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. Oxon: Routledge.

    Google Scholar 

  26. Hauttekeete, L. (2007). Are you ready for the future? (O. v. M. ICT, Trans.). In Agoria (Ed.). Gent: University of Gent.

  27. Haworth, C. M. A., Dale, P., & Plomin, R. (2008). A twin study into the genetic and environmental influences on academic performance in science in nine-year-old boys and girls. International Journal of Science Education, 30(8), 1003–1025.

    Article  Google Scholar 

  28. Hoffman, L. (2002). Promoting girls’ interest and achievement in physics classes for beginners. Learning and Instruction, 12, 447–465.

    Article  Google Scholar 

  29. Hox, J. J. (2010). Multilevel analysis: Techniques and applications (2nd ed.). New York: Routledge.

    Google Scholar 

  30. ITEA. (2003). Advancing excellence in technological literacy: Student assessment, professional development, and program standards. Reston, Virginia: International Technology Education Association.

    Google Scholar 

  31. Johansson, L. (2009). Mathematics, science & technology education report. Brussel: European Round Table of Industrials.

    Google Scholar 

  32. Jones, M. G., Howe, A., & Rua, M. J. (2000). Gender differences in students’ experiences, interests, and attitudes toward science and scientists. Science Education, 84(2), 180–192.

    Article  Google Scholar 

  33. Kind, P., Jones, K., & Barmby, P. (2007). Developing attitudes towards science measures. International Journal of Science Education, 29(7), 871–893.

    Article  Google Scholar 

  34. Kotte, D. (1992). Gender differences in science achievement in 10 countries. Frankfurt/M: Peter Land.

    Google Scholar 

  35. Lindahl, B. (2007). A longitudinal study of students’ attitudes towards science and choice of career. Paper presented at the NARST annual conference, New Orleans.

  36. Lyons, T., & Quinn, F. (2010). Choosing science. Understanding the declines in senior high school science enrolments. Armidale, NSW: University of New England.

  37. Mammes, I. (2004). Promoting girls’ interest in technology through technology education: A research study. International Journal of Technology and Design Education, 14(2), 89–100.

    Article  Google Scholar 

  38. Mawson, B. (2010). Children’s developing understanding of technology. International Journal of Technology and Design Education, 20(1), 1–13.

    Article  Google Scholar 

  39. Moens, G. (2008). TOS21 Technische Geletterdheid voor Iedereen (E. Onderwijs & Vorming, Weteschap en Innovatie, Trans.). Brussel: Vlaamse Overheid.

  40. Mullis, I. V. S., Martin, M. O., Gonzalez, E. J., & Chrostowski, S. J. (2004). TIMSS 2003 international mathematics report: Findings from IEA’s trends in international mathematics and science study at the fourth and eighth grades. Boston: TIMMS & PIRLS International Study Center.

    Google Scholar 

  41. Murphy, C., & Beggs, J. (2005). Primary science in the UK: A scoping study. Final report to the Wellcome Trust. London: Wellcome Trust.

    Google Scholar 

  42. OECD. (2008). Enouraging students interest in science and technology studies. Paris: OECD.

    Google Scholar 

  43. Osborne, J., & Collins, S. (2000). Pupils’ and parents’ views of the school science curriculum (Vol. 82). Hatfield: Association for Science Education.

    Google Scholar 

  44. Osborne, J., & Collins, S. (2001). Pupils’ views of the role and value of the science curriculum: A focus-group study. International Journal of Science Education, 23(5), 441–467.

    Article  Google Scholar 

  45. Osborne, J., Simon, S., & Collins, S. (2003). Attitudes towards science: A review of the literature and its implications. International Journal of Science Education, 25(9), 1049–1079.

    Article  Google Scholar 

  46. Otto, P. B. (1991). One sex one science. School Science and Mathematics, 91(8), 367–372.

    Article  Google Scholar 

  47. Pell, T., & Jarvis, T. (2001). Developing attitude to science scales for use with children of ages from five to eleven years. International Journal of Science Education, 23(8), 847–862.

    Article  Google Scholar 

  48. Raat, J., Coenen-van den Bergh, R., de Klerk Wolters, F., & de Vries, M. (1988). Basic principles of school technology; Report PATT-3 conference. Eindhoven, NL: Technische Universiteit Eindhoven.

    Google Scholar 

  49. Rasbash, J., Browne, W., Healy, M., Cameron, B., & Charlton, C. (2005). MLwiN version 2.02. Bristol: Centre for Multilevel Modelling, University of Bristol.

    Google Scholar 

  50. Rasinen, A., Virtanen, S., Endepohls-Ulpe, M., Ikonen, P., Ebach, J., & Stahl-von Zabern, J. (2009). Technology education for children in primary schools in Finland and Germany: Different schools systems, similar problems and how to overcome them. International Journal of Technology and Design Education, 19(4), 367–379.

    Article  Google Scholar 

  51. Rees, H., & Noyes, J. M. (2007). Mobile telephones, computers, and the internet: Sex differences in adolescents’ use and attitudes. Cyber Psychology & Behavior, 10(3), 482–484.

    Article  Google Scholar 

  52. Salminen-Karlsson, M. (2007). Girls groups and boys groups at a municipal technology centre. International Journal of Science Education, 29(8), 1019–1033.

    Article  Google Scholar 

  53. Schibeci, R. A. (1989). Home, school, and peer group influences on student attitudes and achievement in science. Science Education, 73(1), 13–24.

    Article  Google Scholar 

  54. Schreiner, C., & Sjøberg, S. (2004). ROSE: The relevance of science education. Sowing the seeds of ROSE. Background, rationale, questionnaire development and datacollection for ROSE—A comparative study of students’ views of science and science education. Oslo: Department of Teacher Education and School Development, University of Oslo.

    Google Scholar 

  55. Simpson, R. D., & Oliver, J. S. (1985). Attitude toward science and achievement motivation profiles of male and female science students in grades six through ten. Science Education, 69(4), 511–526.

    Article  Google Scholar 

  56. Simpson, R. D., & Oliver, J. S. (1990). A summary of major influences on attitude toward and achievement in science among adolescent students. Science Education, 74(1), 1–18.

    Article  Google Scholar 

  57. Stein, S. J., & McRobbie, C. J. (1997). Students’ conceptions of science across the years of schooling. Research in Science Education, 27(4), 611–628.

    Article  Google Scholar 

  58. Talton, E. L., & Simpson, R. D. (1987). Relationships of attitude toward classroom environment with attitude toward and achievement in science among tenth grade biology students. Journal of Research in Science Teaching, 24(6), 507–525.

    Article  Google Scholar 

  59. Tytler, R., Osborne, J., Williams, G., Tytler, K., & Cripps Clarck, J. (2008). Opening up pathways: Engagement in STEM across the primary–secondary school transition. Australian Department of Education (Ed.). Canberra.

  60. van Aalderen-Smeets, S. I., & Walma van der Molen, J. H. (2013). Measuring primary teachers’ attitudes towards teaching science: Development of the dimensions of attitude toward science (DAS) instrument. International Journal of Science Education, 35, 577–600.

    Article  Google Scholar 

  61. van Aalderen-Smeets, S. I., Walma van der Molen, J. H., & Asma, L. J. F. (2012). Primary teachers’ attitudes towards science and technology: Towards a new theoretical framework. Science Education, 96, 158–182.

    Article  Google Scholar 

  62. Van den Berghe, W., & De Martelaere, D. (2012). Kiezen voor STEM, De keuze van jongeren voor technische en wetenschappelijke studies. Brussel: Vlaamse Raad voor Wetenschap en Innovatie.

    Google Scholar 

  63. van den Broek, A., Braam, C., & Schevers, M. (2010). Technomonitor 2010. Den Haag: Platform Bèta Techniek.

    Google Scholar 

  64. Van Keulen, H. (2010). Wetenschap en Techniek, ijkpunten voor een domein in ontwikkeling. Den Haag: Platform Bèta Techniek.

    Google Scholar 

  65. Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186–204.

    Article  Google Scholar 

  66. Volk, K. S., & Yip, W. M. (1999). Gender and technology in Hong Kong: A study of pupils’ attitudes toward technology. International Journal of Technology and Design Education, 9, 57–71.

    Article  Google Scholar 

  67. Weinburgh, M. (1995). Gender differences in students attitudes toward science: A meta-analysis of the literature from 1970–1971. Journal of Research in Science Teaching, 32, 387–398.

    Article  Google Scholar 

  68. Yu, K. C., Han, F. N., Hsu, I. Y., & Lin, K. Y. (2005). The development of attitude toward technology scale for junior high school students. Kaohsiung Normal University Journal, 19, 57–71.

    Google Scholar 

  69. Yu, K.-C., Lin, K.-Y., Han, F.-N., & Hsu, I. Y. (2012). A model of junior high school students’ attitudes toward technology. International Journal of Technology and Design Education, 22(4), 423–436.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jan Ardies.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ardies, J., De Maeyer, S., Gijbels, D. et al. Students attitudes towards technology. Int J Technol Des Educ 25, 43–65 (2015). https://doi.org/10.1007/s10798-014-9268-x

Download citation

Keywords

  • Technology education
  • Attitude
  • Secondary education
  • Multilevel analysis