International Tax and Public Finance

, Volume 19, Issue 1, pp 118–138 | Cite as

Distributional consequences of labor-demand shocks: the 2008–2009 recession in Germany

  • Olivier Bargain
  • Herwig Immervoll
  • Andreas PeichlEmail author
  • Sebastian Siegloch


The distributional consequences of the recent economic crisis are still broadly unknown. While it is possible to speculate which groups are likely to be hardest-hit, detailed distributional studies are still largely backward-looking due to a lack of real-time microdata. This paper studies the distributional and fiscal implications of output changes in Germany 2008–2009, using data available prior to the economic downturn. We first estimate labor demand on 12 years of detailed, administrative matched employer-employee data. The distributional analysis is then conducted by transposing predicted employment effects of actual output shocks to household-level microdata. A scenario in which labor demand adjustments occur at the intensive margin (hour changes), close to the German experience, shows less severe effects on the income distribution compared to a situation where adjustments take place through massive layoffs. Adjustments at the intensive margin are also preferable from a fiscal point of view. In this context, we discuss the cushioning effect of the tax-benefit system and the conditions under which German-style work-sharing policies can be successful in other countries.


Labor demand Output shock Tax-benefit system Crisis Income distribution 

JEL Classification

D58 J23 H24 H60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmed, V., & O’Donoghue, C. (2010). Global economic crisis and poverty in Pakistan. International Journal of Microsimulation, 3(1), 127–129. Google Scholar
  2. Alda, H., Bender, S., & Gartner, H. (2005). European data watch: the linked employer-employee dataset created from the IAB establishment panel and the process-produced data of the IAB (LIAB). Schmollers Jahrbuch: Journal of Applied Social Science Studies, 125(2), 327–336. Google Scholar
  3. Bach, H.-U., & Spitznagel, E. (2009). Betriebe zahlen mit—und haben was davon, IAB Kurzbericht No. 17. Google Scholar
  4. Bellmann, L., Gerlach, K., & Meyer, W. (2008). Company-level pacts for employment. Journal of Economics and Statistics, 228(5–6), 533–553. Google Scholar
  5. Bellmann, L., & Gerner, H.-D. (2011). Reversed roles? Wage and employment effects of the current crisis. Research in Labor Economics, 32, 181–206. CrossRefGoogle Scholar
  6. Bender, S., Haas, A., & Klose, C. (2000). The IAB employment subsample 1975–1995. Schmollers Jahrbuch: Journal of Applied Social Science Studies, 120(4), 649–662. Google Scholar
  7. Bond, S., & Van Reenen, J. (2007). Microeconometric models of investment and employment. In J. J. Heckman & E. E. Leamer (Eds.), Handbook of econometrics, vol. 6, pp. 4417–4498. Amsterdam: Elsevier. Chapter 65. Google Scholar
  8. Bourguignon, F., Bussolo, M., & Pereira da Silva, L. (2008). The impact of macroeconomic policies on poverty and income distribution: macro-micro evaluation techniques and tools. New York: Palgrave-Macmillan. Google Scholar
  9. Bourguignon, F., Robilliard, A.-S., & Robinson, S. (2003). Representative versus real households in the macro-economic modelling of inequality. DIAL Document de Travail DT/2003-10. Google Scholar
  10. Brechling, F., & O’Brien, P. (1967). Short-run employment functions in manufacturing industries: an international comparison. Review of Economics and Statistics, 49(3), 277–287. CrossRefGoogle Scholar
  11. Bresson, G., Kramarz, F., & Sevestre, P. (1992). Heterogeneous labor and the dynamics of aggregate labor demand: some estimations using panel data. Empirical Economics, 17(1), 153–168. CrossRefGoogle Scholar
  12. Cahuc, P., & Carcillo, S. (2011). Is short-time work a good method to keep unemployment down? IZA Discussion Paper No. 5430. Google Scholar
  13. Card, D. (1986). Efficient contracts with costly adjustment: short-run employment determination for airline mechanics. The American Economic Review, 76(5), 1045–1071. Google Scholar
  14. Collective Agreement Archive (2009). Tarifpolitik 2009 auf einen Blick, Informationen zur Tarifpolitik, Wirtschafts- und Sozialwissenschaftliches Institut der Hans-Böckler-Stiftung (WSI). Google Scholar
  15. Diewert, W. E. (1971). An application of the shephard duality theorem: a generalized Leontief production function. Journal of Political Economy, 79(3), 481–507. CrossRefGoogle Scholar
  16. Diewert, W. E., & Wales, T. J. (1987). Flexible functional forms and global curvature conditions. Econometrica, 55(1), 43–68. CrossRefGoogle Scholar
  17. Dolls, M., Fuest, C., & Peichl, A. (2010). Automatic stabilizers and economic crisis: US vs. Europe, NBER Working paper 16275. Google Scholar
  18. Eichhorst, W., Feil, M., & Marx, P. (2010). Crisis, what crisis? Patterns of adaptation in European labor markets. Applied Economics Quarterly Supplement, 56(61), 29–64. Google Scholar
  19. Fay, J. A., & Medoff, J. L. (1985). Labor and output over the business cycle: some direct evidence. The American Economic Review, 75(4), 638–655. Google Scholar
  20. Ferreira, F. H. G., Leite, P. G., Pereira da Silva, L.A., & Picchetti, P. (2008). Can the distributional impacts of macroeconomic shocks be predicted? A comparison of top-down macro-micro models with historical data for Brazil. In F. Bourguignon, M. Bussolo, & L. A. Pereira da Silva (Eds.), The impact of macroeconomic policies on poverty and income distribution: macro-micro evaluation techniques and tools, pp. 119–175. New York: Palgrave-Macmillan. Google Scholar
  21. Freier, R., & Steiner, V. (2010). “Marginal employment” and the demand for heterogeneous labour: elasticity estimates from a multi-factor labour demand model for Germany. Applied Economics Letters, 17(12), 1177–1182. CrossRefGoogle Scholar
  22. Gupta, A., & Kapur, V. (2000). Microsimulation in government policy and forecasting. Amsterdam: North-Holland. Google Scholar
  23. Hamermesh, D. S. (1986). The demand for labor in the long run. In O. Ashenfelter & R. Layard (Eds.), Handbook of labor economics, vol. 1, pp. 429–471. Amsterdam: Elsevier. CrossRefGoogle Scholar
  24. Hamermesh, D. S. (1993). Labor demand. Princeton: Princeton University Press. Google Scholar
  25. Hijzen, A., & Venn, D. (2011). The role of short-time work schemes during the 2008–2009 recession, OECD Social, Employment and Migration Working Paper No. 115. Google Scholar
  26. Hérault, N. (2010). Sequential linking of computable general equilibrium and microsimulation models: a comparison of behavioural and reweighting techniques. International Journal of Microsimulation, 3(1), 35–42. Google Scholar
  27. Kölling, A. (2000). The IAB-establishment panel. Schmollers Jahrbuch: Journal of Applied Social Science Studies, 120(2), 291–300. Google Scholar
  28. Möller, J. (2010). The German labor market response in the world recession: De-mystifying a miracle. Journal for Labour Market Research, 42(4), 325–336. Google Scholar
  29. OECD (2010). Moving beyond the jobs crisis. In OECD (Ed.) OECD employment outlook: moving beyond the jobs crisis, pp. 15–102. Paris: OECD. Google Scholar
  30. Peichl, A. (2009). The benefits and problems of linking micro and macro models: evidence from a flat tax analysis. Journal of Applied Economics, 12(2), 301–329. CrossRefGoogle Scholar
  31. Peichl, A., Schneider, H., & Siegloch, S. (2010). Documentation IZAΨMOD: The IZA Policy SImulation MODel. IZA discussion paper No. 4865. Google Scholar
  32. Peichl, A., & Siegloch, S. (2010). Accounting for labor demand effects in structural labor supply models. IZA Discussion Paper No. 5350. Google Scholar
  33. Robilliard, A.-S., Bourguignon, F., & Robinson, S. (2008). Examining the social impact of the Indonesian financial crisis using a macro-micro model. In F. Bourguignon, L. A. Pereira da Silva, & M. Bussolo (Eds.), The impact of macroeconomic policies on poverty and income distribution: macro-micro evaluation techniques and tools, pp. 93–118. New York: Palgrave-Macmillan. Google Scholar
  34. von Wachter, T., & Bender, S. (2006). In the right place at the wrong time: the role of firms and luck in young workers’ careers. The American Economic Review, 96(5), 1679–1705. CrossRefGoogle Scholar
  35. Wagner, G. G., Frick, J. R., & Schupp, J. (2007). The German socio-economic panel study (SOEP)—scope, evolution and enhancements. Schmollers Jahrbuch: Journal of Applied Social Science Studies, 127(1), 139–169. Google Scholar
  36. Zellner, A. (1962). An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. Journal of the American Statistical Association, 57(298), 348–368. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Olivier Bargain
    • 1
  • Herwig Immervoll
    • 2
  • Andreas Peichl
    • 3
    Email author
  • Sebastian Siegloch
    • 4
  1. 1.UC Dublin, IZA, Geary Institute and CHILDDublin 4Ireland
  2. 2.OECD and IZA75775 ParisFrance
  3. 3.IZA, ISER and CESifoUniversity of CologneBonnGermany
  4. 4.IZA and University of CologneBonnGermany

Personalised recommendations