Chen, H., Cho, J., & Xu, S. (2018a). Quantifying the security effectiveness of firewalls and dmzs. In Proc. HoTSoS’2018 (pp. 9:1–9:11).
Chen, H., Cho, J., & Xu, S. (2018b). Quantifying the security effectiveness of network diversity. In Proc. hoTSos’2018 (p. 24:1).
Chen, Y., Huang, Z., Xu, S., & Lai, Y. (2015). Spatiotemporal patterns and predictability of cyberattacks. PLoS One, 10(5), e0124, 472.
Article
Google Scholar
Cho, J., Xu, S., Hurley, P., Mackay, M., Benjamin, T., & Beaumont, M. (2019). Stram: Measuring the trustworthiness of computer-based systems. ACM Comput Surv, 51(6), 128:1–128:47.
Article
Google Scholar
Da, G., Xu, M., & Xu, S. (2014). A new approach to modeling and analyzing security of networked systems. In Proc. HotSoS’14 (pp. 6:1–6:12).
Diffie, W., & Hellman, M.E. (1976). New directions in cryptography. IEEE TransInformTheory IT-22, 644–654.
Du, P., Sun, Z., Chen, H., Cho, J.H., & Xu, S. (2018). Statistical estimation of malware detection metrics in the absence of ground truth. IEEE T-IFS, 13(12), 2965–2980.
Google Scholar
Fang, X., Xu, M., Xu, S., & Zhao, P. (2019). A deep learning framework for predicting cyber attacks rates. EURASIP J Information Security, 2019, 5.
Article
Google Scholar
Fang, Z., Xu, M., Xu, S., & Hu, T. (2021). A framework for predicting data breach risk: Leveraging dependence to cope with sparsity. IEEE Trans Inf Forensics Secur, 16, 2186–2201.
Article
Google Scholar
Goldwasser, S., & Micali, S. (1982). Probabilistic encryption and how to play mental poker keeping secret all partial information. In ACM STOC (pp. 365–377).
Han, Y., Lu, W., & Xu, S. (2014). Characterizing the power of moving target defense via cyber epidemic dynamics. In HotSoS (pp. 1–12).
Han, Y., Lu, W., & Xu, S. (2020). Preventive and reactive cyber defense dynamics with ergodic time-dependent parameters is globally attractive. arXiv:2001.07958.
Harrison, K., & Xu, S. (2007). Protecting cryptographic keys from memory disclosures. In IEEE/IFIP DSN’07 (pp. 137–143).
Herley, C., & van Oorschot, P.C. (2017). Sok: Science, security and the elusive goal of security as a scientific pursuit. In 2017 IEEE symposium on security and privacy (SP) (pp. 99–120).
Huang, X., Yan, F., & Zhang, L. (2021). Honeygadget: A deception based approach for detecting code reuse attacks. Information Systems Frontiers, 23(2). https://doi.org/10.1007/s10796-020-10014-7.
Kocher, P. (1996). Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In Proc. CRYPTO 96, Springer-Verlag, pp 104–113, lNCS 1109.
Kott, A. (2014). Towards fundamental science of cyber security, (pp. 1–13). New York: Springer.
Google Scholar
Li, D., Li, Q., Ye, Y., & Xu, S. (2020). Sok: Arms race in adversarial malware detection. arXiv:2005.11671.
Li, D., Li, Q., Ye, Y., & Xu, S. (2021a). A frameowrk for enhancing deep neural networks against adversarial malware examples. IEEE Transactions on Network Science and Engineering (TNSE), 8, 736–750.
Article
Google Scholar
Li, X., Parker, P., & Xu, S. (2011). A stochastic model for quantitative security analyses of networked systems. IEEE Transactions on Dependable and Secure Computing, 8(1), 28–43.
Article
Google Scholar
Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S., Deng, Z., & Zhong, Y. (2018). Vuldeepecker: A deep learning-based system for vulnerability detection. In: Proc. NDSS’18.
Li, Z., Tang, J., Zou, D., Chen, Q., Xu, S., Zhang, C., Li, Y., & Jin, H. (2021b). Robustness of deep learning-based vulnerability detectors: Attack anddefense. under review.
Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., Chen, Z., Wang, S., & Wang, J. (2021c). Sysevr: A framework for using deep learning to detect software vulnerabilities. IEEE Transactions on Dependable and Secure Computing (accepted for publication).
Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., Zhang, Z., Chen, Z., & Li, D. (2021d). Vuldeelocator: A deep learning-based system for detecting and locating software vulnerabilities. Under review.
Lin, Z., Lu, W., & Xu, S. (2019). Unified preventive and reactive cyber defense dynamics is still globally convergent. IEEE/ACM Trans Netw, 27(3), 1098–1111.
Article
Google Scholar
Liu, Z., Zheng, R., Lu, W., & Xu, S. (2021). Using event-based method to estimate cybersecurity equilibrium. IEEE CAA J Autom Sinica, 8(2), 455–467.
Article
Google Scholar
Mireles, J., Ficke, E., Cho, J., Hurley, P., & Xu, S. (2019). Metrics towards measuring cyber agility. IEEE T-IFS, 14(12), 3217–3232.
Google Scholar
Pendleton, M., Garcia-Lebron, R., Cho, J., & Xu, S. (2016). A survey on systems security metrics. ACM Comput Surv, 49(4), 62:1– 62:35.
Google Scholar
Peng, C., Xu, M., Xu, S., & Hu, T. (2017). Modeling and predicting extreme cyber attack rates via marked point processes. Journal of Applied Statistics, 44(14), 2534–2563.
Article
Google Scholar
Rivest, R., Shamir, A., & Adleman, L. (1978). A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21(2), 120–126.
Article
Google Scholar
Rodriguez, R.M., Golob, E., & Xu, S. (2020). Human cognition through the lens of social engineering cyberattacks. CoRR (to appear in Frontiers in Psychology-Cognition). arXiv:2007.04932.
Roque, A., Bush, K., & Degni, C. (2016). Security is about control: insights from cybernetics. In Proc. HotSoS (pp. 17–24).
Roy, K.C., & Chen, Q. (2021). Deepran: Attention-based bilstm and crf for ransomware early detection and classification. Information Systems Frontiers, 23(2). https://doi.org/10.1007/s10796-020-10017-4.
Schneider, F. (2011). Blueprint for a science of cybersecurity. Tech. rep. Cornell University.
Spring, J., Moore, T., & Pym, D. (2017). Practicing a science of security: A philosophy of science perspective. In Proc. NSPW (pp. 1–18).
Wang, J., Gupta, M., & Rao, H.R. (2015). Insider threats in a financial institution: Analysis of attack-proneness of information systems applications. MIS Quarterly, 39(1), 91–112.
Article
Google Scholar
Wang, J., Shan, Z., Gupta, M., & Rao, H.R. (2019). A longitudinal study of unauthorized access attempts on information systems: The role of opportunity contexts. MIS Quarterly, 43(2).
Xia, B., Bai, Y., Yin, J., Li, Y., & Xu, J. (2021). Loggan: a log-level generative adversarial network for anomaly detection using permutation event modeling. Information Systems Frontiers, 23(2). https://doi.org/10.1007/s10796-020-10026-3.
Xu, M., & Xu, S. (2012). An extended stochastic model for quantitative security analysis of networked systems. Internet Mathematics, 8(3), 288–320.
Article
Google Scholar
Xu, M., Da, G., & Xu, S. (2015a). Cyber epidemic models with dependences. Internet Mathematics, 11(1), 62–92.
Article
Google Scholar
Xu, M., Hua, L., & Xu, S. (2017). A vine copula model for predicting the effectiveness of cyber defense early-warning. Technometrics, 59(4), 508–520.
Article
Google Scholar
Xu, M., Schweitzer, K.M., Bateman, R.M., & Xu, S. (2018). Modeling and predicting cyber hacking breaches. IEEE T-IFS, 13(11), 2856–2871.
Google Scholar
Xu, S. (2008). Collaborative attack vs. collaborative defense (pp. 217–228).
Xu, S. (2014a). Cybersecurity dynamics. In Proc. HotSoS’14 (pp. 14:1–14:2).
Xu, S. (2014b). Emergent behavior in cybersecurity. In Proc. HotSoS (pp. 13:1–13:2).
Xu, S. (2019). Cybersecurity dynamics: A foundation for the science of cybersecurity. In Proactive and dynamic network defense (pp. 1–31).
Xu, S. (2020). The cybersecurity dynamics way of thinking and landscape (invited paper). In ACM Workshop on Moving Target Defense.
Xu, S., & Yung, M. (2009). Expecting the unexpected: Towards robust credential infrastructure. In Financial Crypto (pp. 201–221).
Xu, S., Lu, W., & Xu, L. (2012). Push- and pull-based epidemic spreading in networks: Thresholds and deeper insights. ACM TAAS, 7(3).
Xu, S., Lu, W., Xu, L., & Zhan, Z. (2014). Adaptive epidemic dynamics in networks: Thresholds and control. ACM TAAS, 8(4).
Xu, S., Lu, W., & Li, H. (2015b). A stochastic model of active cyber defense dynamics. Internet Mathematics, 11(1), 23–61.
Article
Google Scholar
Xue, G., Xu, J., Wu, H., Lu, w, & Xu, L. (2021). Incentive mechanism for rational miners in bitcoin mining pool. Information Systems Frontiers, 23(2). https://doi.org/10.1007/s10796-020-10019-2.
Yao, A.C. (1982). Theory and application of trapdoor functions. In Proc. 23rd IEEE Symp. on Foundations of Comp. Science (pp. 80–91). Chicago: IEEE.
Zhan, Z., Xu, M., & Xu, S. (2013). Characterizing honeypot-captured cyber attacks: Statistical framework and case study. IEEE T-IFS, 8(11).
Zhan, Z., Xu, M., & Xu, S. (2015). Predicting cyber attack rates with extreme values. IEEE T-IFS, 10(8), 1666–1677.
Google Scholar
Zheng, R., Lu, W., & Xu, S. (2015). Active cyber defense dynamics exhibiting rich phenomena. In Proc. HotSoS.
Zheng, R., Lu, W., & Xu, S. (2018). Preventive and reactive cyber defense dynamics is globally stable. IEEE TNSE, 5(2), 156–170.
Google Scholar
Zou, D., Wang, S., Xu, S., Li, Z., & Jin, H. (2019). μ vuldeepecker: A deep learning-based system for multiclass vulnerability detection. IEEE Transactions on Dependable and Secure Computing, pp 1–1. https://doi.org/10.1109/TDSC.2019.2942930.
Zou, D., Zhu, Y., Xu, S., Li, Z., Jin, H., & Ye, H. (2021). Interpreting deep learning-based vulnerability detector predictions based on heuristic searching. ACM Transactions on Software Engineering and Methodology, 30(2).