Skip to main content
Log in

Integrated Declarative Process and Decision Discovery of the Emergency Care Process

Information Systems Frontiers Aims and scope Submit manuscript

Abstract

Deviations and variations are the norm rather than the exception in medical diagnosis and treatment processes. Physicians must leverage their knowledge and experience to choose an appropriate variation for each patient. However, this knowledge and experience is often tacit. Process modeling offers a way to convert tacit to explicit knowledge. Many process mining techniques have been developed due to the difficulty of doing this manually, yet, they often neglect the decisions themselves, and these proposed techniques are just one piece of a comprehensive process discovery method. In this paper, we use the Action Design Research methodology to develop a method for process and decision discovery of medical diagnosis and treatment processes. The method was iteratively improved and validated by applying it to a practical setting, which was the emergency medicine department of a hospital. An analysis of the resulting model shows that previously tacit knowledge was successfully made explicit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. AZ Maria Middelares hospital, Ghent, Belgium - https://www.mariamiddelares.be/

  2. https://github.com/stevmert/discoveryMethod

  3. Also available at https://github.com/stevmert/discoveryMethod.

  4. https://fluxicon.com/disco/

References

  • van der Aalst, W. M. P. (2011). Process mining. In: Discovery, conformance and enhancement of business processes. :Springer. https://doi.org/10.1007/978-3-642-19345-3.

  • van der Aalst, W. M. P. (2013). Business process management: A comprehensive survey. In: ISRN Software Engineering, pp. 1–37. https://doi.org/10.1155/2013/507984.

  • van der Aalst, W. M. P., Pesic, M., & Schonenberg, H. (2009). Declarative workflows: Balancing between flexibility and support. Computer Science - Research and Development, 23(2), 99–113. https://doi.org/10.1007/s00450-009-0057-9.

    Article  Google Scholar 

  • Abo-Hamad, W. (2017). “Patient pathways discovery and analysis using process mining techniques: an emergency department case study,” in Health Care Systems Engineering (ICHCSE). Springer Proceedings in Mathematics and Statistics. PROMS Vol. 210. :Springer, pp. 209–219. https://doi.org/10.1007/978-3-319-66146-9_19.

  • Agrawal, R., and Srikant, R. (1994). “Fast algorithms for mining association rules,” in VLDB, pp. 487–499. https://doi.org/10.1.1.40.7506.

  • Andersen, S. N., & Broberg, O. (2017). A framework of knowledge creation processes in participatory simulation of hospital work systems. Ergonomics, 60(4), 487–503. https://doi.org/10.1080/00140139.2016.1212999.

    Article  Google Scholar 

  • Antunes, P., Pino, J. A., Tate, M., & Barros, A. (2020). Eliciting process knowledge through process stories. Information Systems Frontiers, 22, 1179–1201. https://doi.org/10.1007/s10796-019-09922-0.

    Article  Google Scholar 

  • Baker, K., Dunwoodie, E., Jones, R. G., Newsham, A., Johnson, O., Price, C. P., Wolstenholme, J., Leal, J., McGinley, P., Twelves, C., & Hall, G. (2017). Process mining routinely collected electronic health records to define real-life clinical pathways during chemotherapy. International Journal of Medical Informatics, 103, 32–41. https://doi.org/10.1016/j.ijmedinf.2017.03.011 Elsevier Ireland Ltd.

    Article  Google Scholar 

  • Basole, R. C., Braunstein, M. L., Kumar, V., Park, H., Kahng, M., Chau, D. H., Tamersoy, A., Hirsh, D. A., Serban, N., Bost, J., Lesnick, B., Schissel, B. L., & Thompson, M. (2015). Understanding variations in pediatric asthma care processes in the emergency department using visual analytics. Journal of the American Medical Informatics Association, 22(2), 318–323. https://doi.org/10.1093/jamia/ocu016.

    Article  Google Scholar 

  • De Bleser, L., Depreitere, R., De Waele, K., Vanhaecht, K., Vlayen, J., & Sermeus, W. (2006). Defining pathways. Journal of Nursing Management, 14(7), 553–563. https://doi.org/10.1111/j.1365-2934.2006.00702.x.

    Article  Google Scholar 

  • Braga, B. F. B., Almeida, J. P. A., Guizzardi, G., & Benevides, A. B. (2010). Transforming OntoUML into alloy: Towards conceptual model validation using a lightweight formal method. Innovations in Systems and Software Engineering, 6(1), 55–63. https://doi.org/10.1007/s11334-009-0120-5.

    Article  Google Scholar 

  • Burattin, A., Cimitile, M., Maggi, F. M., & Sperduti, A. (2015). Online discovery of declarative process models from event streams. IEEE Transactions on Services Computing, 8(6), 833–846. https://doi.org/10.1109/TSC.2015.2459703 IEEE.

    Article  Google Scholar 

  • Burattin, A., Maggi, F. M., & Sperduti, A. (2016). Conformance checking based on multi-perspective declarative process models. Expert Systems with Applications, 65, 194–211. https://doi.org/10.1016/j.eswa.2016.08.040 Elsevier Ltd.

    Article  Google Scholar 

  • Bygstad, B., Øvrelid, E., Lie, T., & Bergquist, M. (2020). Developing and organizing an analytics capability for patient flow in a general hospital. Information Systems Frontiers, 22, 353–364. https://doi.org/10.1007/s10796-019-09920-2.

    Article  Google Scholar 

  • Campbell, H., Hotchkiss, R., Bradshaw, N., & Porteous, M. (1998). Integrated care pathways. BMJ, 316, 133. https://doi.org/10.1136/bmj.316.7125.133.

    Article  Google Scholar 

  • Di Ciccio, C., Maggi, F. M., Montali, M., & Mendling, J. (2017). Resolving Inconsistencies and redundancies in declarative process models. Information Systems, 64), Elsevier Ltd, 425–446. https://doi.org/10.1016/j.is.2016.09.005.

    Article  Google Scholar 

  • Di Ciccio, C., Marrella, A., & Russo, A. (2015a). Knowledge-intensive processes: Characteristics, requirements and analysis of contemporary approaches. Journal on Data Semantics, 4(1), 29–57. https://doi.org/10.1007/s13740-014-0038-4.

    Article  Google Scholar 

  • Di Ciccio, C., Mecella, M., and Mendling, J. (2015b). “The effect of noise on mined declarative constraints,” in Data-driven process discovery and analysis (SIMPDA’13). LNBIP Vol. 203. :Springer, pp. 1–24. https://doi.org/10.1007/978-3-662-46436-6_1.

  • Cognini, R., Corradini, F., Gnesi, S., Polini, A., & Re, B. (2018). Business process flexibility - a systematic literature review with a software systems perspective. Information Systems Frontiers, 20(2), 343–371. https://doi.org/10.1007/s10796-016-9678-2.

    Article  Google Scholar 

  • Combi, C., Oliboni, B., and Gabrieli, A. (2015). “Conceptual modeling of clinical pathways: Making data and processes connected,” in 15th Conference on Artificial Intelligence in Medicine (AIME), Pavia, Italy pp. 57–62. https://doi.org/10.1007/978-3-319-19551-3_7.

  • Daelemans, W., Zavrel, J., van Der Sloot, K., and van Den Bosch, A. (2009). TiMBL: Tilburg memory based learner, version 6.2, reference guide, ILK Research Group Technical Report Series (07–07), p. 66.

  • Deokar, A. V., & El-Gayar, O. F. (2011). Decision-enabled dynamic process management for networked enterprises. Information Systems Frontiers, 13, 655–668. https://doi.org/10.1007/s10796-010-9243-3.

    Article  Google Scholar 

  • Dijkman, R., Vincent, S., & Ad, L. (2016). Properties that influence business process management maturity and its effect on organizational performance. Information Systems Frontiers, 18, 717–734. https://doi.org/10.1007/s10796-015-9554-5.

    Article  Google Scholar 

  • Duma, D., & Aringhieri, R. (2020). An ad hoc process mining approach to discover patient paths of an emergency department. Flexible Services and Manufacturing Journal, 32, 6–34. https://doi.org/10.1007/s10696-018-9330-1 Springer.

    Article  Google Scholar 

  • Dumas, M., La Rosa, M., Mendling, J., & Reijers, H. A. (2018). Fundamentals of business process management (2nd ed.). Berlin: Springer-Verlag. https://doi.org/10.1007/978-3-662-56509-4.

    Book  Google Scholar 

  • Durieux, P., Nizard, R., Ravaud, P., Mounier, N., & Lepage, E. (2000). A clinical decision support system for prevention of venous thromboembolism. JAMA, 283(21), 2816–2821. https://doi.org/10.1001/jama.283.21.2816.

    Article  Google Scholar 

  • van Eck, M. L., Lu, X., Leemans, S. J. J., & van der Aalst, W. M. P. (2015). PM2: a process mining project methodology. In J. Zdravkovic, M. Kirikova, & P. Johannesson (Eds.), CAiSE’15. LNCS, Vol. 9097 (pp. 297–313). https://doi.org/10.1007/978-3-319-19069-3_19.

    Chapter  Google Scholar 

  • Fernandez-Llatas, C., Martinez-Millana, A., Martinez-Romero, A., Benedi, J. M., and Traver, V. (2015). “Diabetes care related process modelling using process mining techniques. Lessons learned in the application of interactive pattern recognition: coping with the spaghetti effect,” in 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE Xplore, pp. 2127–2130. https://doi.org/10.1109/EMBC.2015.7318809.

  • Funkner, A. A., Yakovlev, A. N., & Kovalchuk, S. V. (2017). Towards evolutionary discovery of typical clinical pathways in electronic health records. Procedia Computer Science, 119, 234–244. https://doi.org/10.1016/j.procs.2017.11.181 Elsevier.

    Article  Google Scholar 

  • Ghasemi, M., and Amyot, D. 2016. “Process mining in healthcare: A systematised literature review,” International Journal of Electronic Healthcare (9:1). https://doi.org/10.1504/IJEH.2016.078745.

  • Goedertier, S., Vanthienen, J., & Caron, F. (2015). Declarative business process modelling: Principles and modelling languages. Enterprise Information Systems, 9(2), 161–185. https://doi.org/10.1080/17517575.2013.830340.

    Article  Google Scholar 

  • Greenes, R. A., Bates, D. W., Kawamoto, K., Middleton, B., Osheroff, J., & Shahar, Y. (2018). Clinical decision support models and frameworks: Seeking to address research issues underlying implementation successes and failures. Journal of Biomedical Informatics, 78, 134–143. https://doi.org/10.1016/j.jbi.2017.12.005.

    Article  Google Scholar 

  • Guizzardi, G., Wagner, G., De Almeida Falbo, R., Guizzardi, R. S. S., and Almeida, J. P. A. 2013. “Towards Ontological Foundations for the Conceptual Modeling of Events,” in International Conference on Conceptual Modeling (ER). LNCS Vol. 8217, W. Ng, V. C. Storey, and J. C. Trujillo (eds.), Springer, pp. 327–341. https://doi.org/10.1007/978-3-642-41924-9_27.

  • Haisjackl, C., Barba, I., Zugal, S., Soffer, P., Hadar, I., Reichert, M., Pinggera, J., and Weber, B. 2014. “Understanding Declare Models: Strategies, Pitfalls, Empirical Results,” Software & Systems Modeling (Special Se), pp. 1–28. https://doi.org/10.1007/s10270-014-0435-z.

  • Hay, M., Weisner, T. S., Subramanian, S., Duan, N., Niedzinski, E. J., & Kravitz, R. L. (2008). Harnessing experience: Exploring the gap between evidence-based medicine and clinical practice. Journal of Evaluation in Clinical Practice, 14(5), 707–713. https://doi.org/10.1111/j.1365-2753.2008.01009.x.

    Article  Google Scholar 

  • Helm, E., & Paster, F. (2015). First steps towards process Mining in Distributed Health Information Systems. International Journal of Electronics and Telecommunications, 61(2), 137–142. https://doi.org/10.1515/eletel-2015-0017.

    Article  Google Scholar 

  • Hertz, S., Johansson, J. K., & de Jager, F. (2001). Customer-oriented cost cutting: Process Management at Volvo. Supply Chain Management, 6(3), 128–142. https://doi.org/10.1108/13598540110399174.

    Article  Google Scholar 

  • Heß, M., Kaczmarek, M., Frank, U., Podleska, L.-E., and Taeger, G. 2015. “Towards a Pathway-Based Clinical Cancer Registration in Hospital Information Systems,” in Knowledge Representation for Health Care. LNCS Vol. 9485, Springer, pp. 80–94. https://doi.org/10.1007/978-3-319-26585-8_6.

  • Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems research. MIS Quarterly, 28(1), 75–105.

    Article  Google Scholar 

  • Hildebrandt, T., Mukkamala, R. R., & Slaats, T. (2012). Declarative Modelling and safe distribution of healthcare workflows. In Z. Liu & A. Wassyng (Eds.), FHIES 2011. LNCS Vol. 7151 (pp. 39–56). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-32355-3_3.

    Chapter  Google Scholar 

  • Huang, Z., Bao, Y., Dong, W., Lu, X., and Duan, H. 2014. “Online Treatment Compliance Checking for Clinical Pathways,” Journal of Medical Systems (38:10). https://doi.org/10.1007/s10916-014-0123-0.

  • Huang, Z., Dong, W., Ji, L., He, C., and Duan, H. 2016. “Incorporating Comorbidities into Latent Treatment Pattern Mining for Clinical Pathways,” Journal of Biomedical Informatics (59), Elsevier Inc., pp. 227–239. https://doi.org/10.1016/j.jbi.2015.12.012.

  • Kamsu-Foguem, B., Tchuenté-Foguem, G., & Foguem, C. (2014). Using conceptual graphs for clinical guidelines representation and knowledge visualization. Information Systems Frontiers, 16(4), 571–589. https://doi.org/10.1007/s10796-012-9360-2.

    Article  Google Scholar 

  • Kim, G., & Suh, Y. (2011). Semantic business process space for intelligent Management of Sales Order Business Processes. Information Systems Frontiers, 13(4), 515–542. https://doi.org/10.1007/s10796-010-9229-1.

    Article  Google Scholar 

  • Kimble, C., de Vasconcelos, J. B., & Rocha, Á. (2016). Competence Management in Knowledge Intensive Organizations Using Consensual Knowledge and Ontologies. Information Systems Frontiers, 18(6), 1119–1130. https://doi.org/10.1007/s10796-016-9627-0.

    Article  Google Scholar 

  • Klein, J. H., and Young, T. 2015. “Health Care: A Case of Hypercomplexity?,” Health Systems (4:2), Springer, pp. 104–110. https://doi.org/10.1057/hs.2014.21, Health care: a case of hypercomplexity?.

  • Kluza, K., & Nalepa, G. J. (2019). Formal model of business processes integrated with business rules. Information Systems Frontiers, 21(5), 1167–1185. https://doi.org/10.1007/s10796-018-9826-y.

    Article  Google Scholar 

  • Kovalchuk, S., Funkner, A., Metsker, O., and Yakovlev, A. (2018). “Simulation of Patient Flow in Multiple Healthcare Units Using Process and Data Mining Techniques for Model Identification,” Journal of Biomedical Informatics (82), Elsevier, pp. 128–142. https://doi.org/10.1016/j.jbi.2018.05.004.

  • Krishnan, M. S., Mukhopadhyay, T., & Zubrow, D. (1999). Software process models and project performance. Information Systems Frontiers, 1, 267–277. https://doi.org/10.1023/A:1010054412650.

    Article  Google Scholar 

  • Kurniati, A. P., Johnson, O., Hogg, D., and Hall, G. 2016. “Process Mining in Oncology: A Literature Review,” in ICICM 2016, IEEE, October, pp. 291–297. https://doi.org/10.1109/INFOCOMAN.2016.7784260.

  • Lawal, A. K., Rotter, T., Kinsman, L., Machotta, A., Ronellenfitsch, U., Scott, S. D., Goodridge, D., Plishka, C., and Groot, G. (2016). “What Is a Clinical Pathway? Refinement of an Operational Definition to Identify Clinical Pathway Studies for a Cochrane Systematic Review,” BMC Medicine (14:1), BMC Medicine, pp. 1–5. https://doi.org/10.1186/s12916-016-0580-z.

  • Lenz, R., & Reichert, M. (2007). IT support for healthcare processes - premises, challenges, perspectives. Data & Knowledge Engineering, 61(1), 39–58. https://doi.org/10.1016/j.datak.2006.04.007.

    Article  Google Scholar 

  • Maggi, F. M., Dumas, M., García-Bañuelos, L., and Montali, M. 2013. “Discovering Data-Aware Declarative Process Models from Event Logs,” in BPM’13. LNCS Vol. 8094, F. Daniel, J. Wang, and B. Weber (eds.), Springer, pp. 81–96. https://doi.org/10.1007/978-3-642-40176-3_8.

  • Manning, C. D., & Schütze, H. (1999). Foundations of statistical natural language processing. Cambridge, MA: MIT Press.

    Google Scholar 

  • Mardini, M. T., & Ras, Z. W. (2020). Discovering primary medical procedures and their associations with other procedures in HCUP data. Information Systems Frontiers. https://doi.org/10.1007/s10796-020-10058-9.

  • Mariscal, G., Marbán, Ó., & Fernández, C. (2010). A survey of data mining and knowledge discovery process models and methodologies. Knowledge Engineering Review, 25(2), 137–166. https://doi.org/10.1017/S0269888910000032.

    Article  Google Scholar 

  • Martin, N., De Weerdt, J., Fernandez-Llatas, C., Gal, A., Gatta, R., Ibáñez, G., Johnson, O., Mannhardt, F., Marco-Ruiz, L., Mertens, S., Munoz-Gama, J., Seoane, F., Vanthienen, J., Wynn, M. T., Boilève, D. B., Bergs, J., Joosten-Melis, M., Schretlen, S., and Van Acker, B. 2020. “Recommendations for Enhancing the Usability and Understandability of Process Mining in Healthcare,” Artificial Intelligence in Medicine (109). https://doi.org/10.1016/j.artmed.2020.101962.

  • Mertens, S., Gailly, F., and Poels, G. 2017. “Towards a Decision-Aware Declarative Process Modeling Language for Knowledge-Intensive Processes,” Expert Systems with Applications (87), Elsevier Ltd, pp. 316–334. https://doi.org/10.1016/j.eswa.2017.06.024.

  • Mertens, S., Gailly, F., and Poels, G. 2018. “Discovering Health-Care Processes Using DeciClareMiner,” Health Systems - Special Issue: SIG-Health Design, Innovation, and Impact of Healthcare IT (7:3), Taylor & Francis, pp. 195–211. https://doi.org/10.1080/20476965.2017.1405876

  • Mertens, S., Gailly, F., and Poels, G. 2019a. “A generic framework for flexible and data-aware business process engines,” in Advanced information systems engineering (CAiSE) Workshops. LNBIP Vol. 349, H. Proper and J. Stirna (eds.), Springer, Cham, pp. 201–213. https://doi.org/10.1007/978-3-030-20948-3_18.

  • Mertens, S., Gailly, F., Van Sassenbroeck, D., and Poels, G. (2019b). “Comparing Strategies to Generate Experience-Based Clinical Process Recommendations That Leverage Similarity to Historic Data,” in 2019 IEEE International Conference on Healthcare Informatics (ICHI), Xi’an, China: IEEE. https://doi.org/10.1109/ICHI.2019.8904693.

  • Nunes, V. T., Santoro, F. M., Werner, C. M. L., & Ralha, C. G. (2016). Context and planning for dynamic adaptation in PAIS. In M. Reichert & H. A. Reijers (Eds.), BPM workshops. LNBIP Vol. 256 (pp. 471–483). Cham: Springer. https://doi.org/10.1007/978-3-319-42887-1_38.

    Chapter  Google Scholar 

  • Orellana Garcia, A., Perez Ramirez, Y. E., & Armenteros Larrea, O. U. (2015). Process Mining in Healthcare: Analysis and modeling of processes in the emergency area. IEEE Latin America Transactions, 13(5), 1612–1618. https://doi.org/10.1109/TLA.2015.7112022.

    Article  Google Scholar 

  • Palvia, P., Lowe, K., Nemati, H., and Jacks, T. 2012. “Information Technology Issues in Healthcare: Hospital CEO and CIO Perspectives,” Information Technology (30). http://libres.uncg.edu/ir/uncg/f/K_Lowe_Information_2012.pdf.

  • Payton, F. C., Paré, G., LeRouge, C., and Reddy, M. 2011. “Health Care IT: Process, People, Patients and Interdisciplinary Considerations,” Journal of the Association for Information Systems (12:2). https://doi.org/10.17705/1jais.00259.

  • Pesic, M. (2008). Constraint-based workflow management systems: Shifting control to users. Doctoral Dissertation: Technische Universiteit Eindhoven. https://doi.org/http://www.narcis.nl/publication/RecordID/oai:library.tue.nl:638413.

    Google Scholar 

  • Rebuge, Á., & Ferreira, D. R. (2012). Business process analysis in healthcare environments: A methodology based on process mining. Information Systems, 37(2), 99–116. https://doi.org/10.1016/j.is.2011.01.003.

    Article  Google Scholar 

  • Rehse, J.-R., Fettke, P., and Loos, P. 2018. “Process Mining and the Black Swan: An Empirical Analysis of the Influence of Unobserved Behavior on the Quality of Mined Process Models,” in BPM Workshops. LNBIP Vol 308, E. Teniente and M. Weidlich (eds.), Springer, pp. 256–268. https://doi.org/10.1007/978-3-319-74030-0_19.

  • Rojas, E., Arias, M., and Sepúlveda, M. 2015. “Clinical Processes and Its Data, What Can We Do with Them?,” in HEALTHINF ‘15, SCITEPRESS - Science and and Technology Publications, pp. 642–647. https://doi.org/10.5220/0005287206420647.

  • Rojas, E., Cifuentes, A., Burattin, A., Munoz-Gama, J., Sepúlveda, M., and Capurro, D. 2019. “Performance Analysis of Emergency Room Episodes through Process Mining,” International Journal of Environmental Research and Public Health (16:7). https://doi.org/10.3390/ijerph16071274.

  • Rojas, E., Munoz-Gama, J., Sepúlveda, M., and Capurro, D. 2016. “Process Mining in Healthcare: A Literature Review,” Journal of Biomedical Informatics (61), Elsevier Inc., pp. 224–236. https://doi.org/10.1016/j.jbi.2016.04.007.

  • Rotter, T., Kinsman, L., James, E. L., Machotta, A., Gothe, H., Willis, J., Snow, P., and Kugler, J. 2010. “Clinical Pathways: Effects on Professional Practice, Patient Outcomes, Length of Stay and Hospital Costs,” Cochrane Database of Systematic Reviews (3), (T. Rotter, ed.), Chichester, UK: John Wiley & Sons, Ltd, pp. 1–170. https://doi.org/10.1002/14651858.CD006632.pub2.

  • Rovani, M., Maggi, F. M., de Leoni, M., and van der Aalst, W. M. P. 2015. “Declarative Process Mining in Healthcare,” Expert Systems with Applications (42:23), Elsevier Ltd., pp. 9236–9251. https://doi.org/10.1016/j.eswa.2015.07.040.

  • Santoro, F. M., Slaats, T., Hildebrandt, T. T., and Baião, F. A. 2019. “DCR-KiPN a hybrid modeling approach for knowledge-intensive processes,” in 2019 Conceptual Modeling (ER). LNCS Vol. 11788, A. Laender, B. Pernici, E. Lim, and J. de Oliveira (eds.), Springer, Cham, pp. 153–161. https://doi.org/10.1007/978-3-030-33223-5_13.

  • Schönig, S., Di Ciccio, C., Maggi, F. M., and Mendling, J. 2016. “Discovery of Multi-Perspective Declarative Process Models,” in ICSOC 2016: Service-Oriented Computing. LNCS Vol. 9936, Q. Sheng, E. Stroulia, S. Tata, and S. Bhiri (eds.), Springer, pp. 87–103. https://doi.org/10.1007/978-3-319-46295-0_6.

  • Sein, M. K., Henfridsson, O., Purao, S., Rossi, M., & Lindgren, R. (2011). Action design research. MIS Quarterly, 35(1), 37–56. https://doi.org/10.2307/23043488.

    Article  Google Scholar 

  • Shearer, C. (2000). The crisp-Dm model: The new blueprint for data mining. Journal of Data Ware- Housing, 5(4), 13–22.

    Google Scholar 

  • Sittig, D. F., Wright, A., Osheroff, J. A., Middleton, B., Teich, J. M., Ash, J. S., Campbell, E., & Bates, D. W. (2008). Grand challenges in clinical decision support. Journal of Biomedical Informatics, 41(2), 387–392. https://doi.org/10.1016/j.jbi.2007.09.003.

    Article  Google Scholar 

  • van der Spoel, S., van Keulen, M., and Amrit, C. 2013. “Process Prediction in Noisy Data Sets: A Case Study in a Dutch Hospital,” in SIMPDA’12. LNBIP Vol. 162, P. Cudre-Mauroux, P. Ceravolo, and D. Gašević (eds.), pp. 60–83. https://doi.org/10.1007/978-3-642-40919-6_4.

  • Stefanelli, M. (2004). Knowledge and process Management in Health Care Organizations. Methods of Information in Medicine, 43(05), 525–535. https://doi.org/10.1055/s-0038-1633911.

    Article  Google Scholar 

  • Suriadi, S., Andrews, R., ter Hofstede, A. H. M., and Wynn, M. T. 2017. “Event Log Imperfection Patterns for Process Mining: Towards a Systematic Approach to Cleaning Event Logs,” Information Systems (64), Elsevier, pp. 132–150. https://doi.org/10.1016/j.is.2016.07.011.

  • Vanbrabant, L., Martin, N., Ramaekers, K., and Braekers, K. 2019. “Quality of Input Data in Emergency Department Simulations: Framework and Assessment Techniques,” Simulation Modelling Practice and Theory (91), Elsevier, pp. 83–101. https://doi.org/10.1016/j.simpat.2018.12.002.

  • Vanhaecht, K., De Witte, K., Depreitere, R., & Sermeus, W. (2006). Clinical pathway audit tools: A systematic review. Journal of Nursing Management, 14(7), 529–537. https://doi.org/10.1111/j.1365-2934.2006.00705.x.

    Article  Google Scholar 

  • Wang, T., Tian, X., Yu, M., Qi, X., & Yang, L. (2017). Stage division and pattern discovery of complex patient care processes. Journal of Systems Science and Complexity, 30(5), 1136–1159. https://doi.org/10.1007/s11424-017-5302-x.

    Article  Google Scholar 

  • Wyatt, J. C. (2001). Management of Explicit and Tacit Knowledge. Journal of the Royal Society of Medicine, 94(1), 6–9. https://doi.org/10.1177/014107680109400102.

    Article  Google Scholar 

  • Zhang, Y., Padman, R., and Patel, N. 2015. “Paving the COWpath: Learning and Visualizing Clinical Pathways from Electronic Health Record Data,” Journal of Biomedical Informatics (58), Elsevier, pp. 186–197. https://doi.org/10.1016/j.jbi.2015.09.009.

Download references

Acknowledgments

This work has been partially supported by the Flemish Agency for Innovation and Entrepreneurship (VLAIO) as part of project HBC.2019.2223. We also would like to thank the AZ Maria Middelares hospital in Ghent, Belgium, for their support and cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Mertens.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mertens, S., Gailly, F., Van Sassenbroeck, D. et al. Integrated Declarative Process and Decision Discovery of the Emergency Care Process. Inf Syst Front 24, 305–327 (2022). https://doi.org/10.1007/s10796-020-10078-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10796-020-10078-5

Keywords

Navigation