A Fast Exact Algorithm for Deployment of Sensor Nodes for Internet of Things

  • Qinghua Zheng
  • Chutong Yang
  • Haijun YangEmail author
  • Jianhe Zhou


The deployment problem of sensor nodes of Internet of things (IoT) can be abstracted as listing minimal dominating sets of a graph. The problem of listing all the minimal dominating sets in a graph can be converted to the problem of state space search among candidate vertex sets. The search and optimization technologies, such as the bidirectional search and branch cut, can be applied to solve the problem effectively. Our experiments show that the new algorithm can reduce the running time by at least an order of magnitude, compared to a state-of-the-art algorithm for listing all the minimal dominating sets.


Graph Minimal dominating set Exact algorithm State space search 



This research was partially supported by National Natural Science Foundation of China (Grant No. 71771006, 71171010).

The authors wish to thank those anonymous reviewers who gave us much valuable advice to revise this manuscript. This research was partially supported by National Natural Science Foundation of China (Grant No. 71771006 No. 71171010 all to Haijun Yang).


  1. Dou, R., & Nan, G. (2017). Optimizing sensor network coverage and regional connectivity in industrial IoT systems. IEEE Systems Journal, 11(3), 1351–1360.CrossRefGoogle Scholar
  2. Fomin, F. V., Kratsch D., & Woeginger, G. J. (2004). Exact (Exponential) Algorithms for the Dominating Set Problem. 30th International Workshop on Graph-Theoretic Concepts in Computer Science - WG, Bad Honnef, Germany, June 21–23, 245–256.Google Scholar
  3. Fomin, F. V., Grandoni, F., & Kratsch, D. (2005a). Measure and conquer: Domination - a case study. Proceedings of the 32nd International Colloquium on Automata, Languages and Programming, Lisbon, Portugal, 191–203.Google Scholar
  4. Fomin F. V., Grandoni F., Pyatkin A. V., & Stepanov A. A. (2005b). Bounding the number of minimal dominating sets: A measure and conquer approach. Proceedings of the 16th International Symposium on Algorithms and Computation. Sanya, Hainan, China, 573–582.Google Scholar
  5. Fomin F.V., Grandoni F., Pyatkin A.V., & Stepanov A. A. (2008). Combinatorial bounds via measure and conquer: Bounding minimal dominating sets and applications. ACM Transactions on Algorithms, 5(1), 9:1–17.Google Scholar
  6. Gabriel, K. R., & Sokal, R. R. (1969). A new statistical approach to geographic variation analysis. Systematic Zoology, 18(3), 259–278.CrossRefGoogle Scholar
  7. Grandoni, F. (2006). A note on the complexity of minimum dominating set. Journal of Discrete Algorithms, 4(2), 209–214.CrossRefGoogle Scholar
  8. Gupta, A., Deokar, A., Iyer, L., Sharda, R., & Schrader, D. (2018). Big Data & Analytics for societal impact: Recent research and trends. Information Systems Frontiers, 20(2), 185–194.CrossRefGoogle Scholar
  9. Hedetniemi, S. T., Jacobs, D. P., & Kennedy, K. E. (2015). A theorem of ore and self-stabilizing algorithms for disjoint minimal dominating sets. Theoretical Computer Science, 593, 132–138.CrossRefGoogle Scholar
  10. Jin, X., Chun, S., Jung, J., & Lee, K. H. (2017). A fast and scalable approach for IoT service selection based on a physical service model. Information Systems Frontiers, 19(6), 1357–1372.CrossRefGoogle Scholar
  11. Kirtsis, D. (2011). Closed-loop PLM for intelligent products in the era of the internet of things. Computer-Aided Design, 43(5), 479–501.CrossRefGoogle Scholar
  12. Kratsch, D. (2008). Exact algorithms for dominating set. In Encyclopedia of Algorithms (pp. 284–286). Boston: Springer.Google Scholar
  13. Li, S., Xu, L. D., & Zhao, S. (2015). The internet of things: A survey. Information Systems Frontiers, 17(2), 243–259.CrossRefGoogle Scholar
  14. Lu, G., Zhou, M. T., Tang, Y., Wu, W. Q., Qiu, G. Y., & Yuan, L. (2010). A survey on exact algorithms for dominating set related problems in arbitrary graphs. Chinese Journal of Computers, 33(6), 1073–1087.CrossRefGoogle Scholar
  15. Luger, G. F. (2008). Artificial intelligence: Structures and strategies for complex problem solving (6th ed.). New Jersey: Addison Wesley.Google Scholar
  16. Ozturk, C., Karaboga, D., & Gorkemli, B. (2011). Probabilistic dynamic deployment of wireless sensor networks by artificial bee Colony algorithm. Sensors, 11, 6056–6065.CrossRefGoogle Scholar
  17. Randerath, B., Schiermeyer, I. (2004). Exact algorithms for minimum dominating set. Technical Report zaik-469, Zentrum für Angewandte Informatik, Köln, Germany.Google Scholar
  18. Tien, J. M. (2017). Internet of Things, Real-Time Decision Making, and Artificial Intelligence. Annals of Data Science, 4(2), 149–178.Google Scholar
  19. Van Rooij, J. M. M., & Bodlaender, H. L. (2011). Exact algorithms for dominating set. Discrete Applied Mathematics, 159(17), 2147–2164.CrossRefGoogle Scholar
  20. Wang, C., Qi, F., Shi, G., & Wang, X. (2013). A sparse representation-based deployment method for optimizing the observation quality of camera networks. Sensors, 13, 11453–11475.CrossRefGoogle Scholar
  21. Xu, R., Wu, C., Zhu, S., Fang, B., Wang, W., Xu, L., & He, W. (2017). A rapid maneuver path planning method with complex sensor pointing constraints in the attitude space. Information Systems Frontiers, 19(4), 945–953.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Qinghua Zheng
    • 1
  • Chutong Yang
    • 2
  • Haijun Yang
    • 3
    • 4
    Email author
  • Jianhe Zhou
    • 1
  1. 1.School of Computer ScienceGuangxi University of Science and TechnologyLiuzhouChina
  2. 2.Jacobs School of EngineeringUniversity of California San DiegoSan DiegoUSA
  3. 3.School of Economics and ManagementBeihang UniversityBeijingChina
  4. 4.Beijing Advanced Innovation Center for Big Data and Brain ComputingBeihang UniversityBeijingChina

Personalised recommendations