Information Systems Frontiers

, Volume 21, Issue 1, pp 5–25 | Cite as

Towards a Methodology for Knowledge Reuse Based on Semantic Repositories

  • Anabel FragaEmail author
  • Juan Llorens
  • Gonzalo Génova


Although reuse is generally considered a good practice within software engineering, several problems dissuade its industrial application and a new viewpoint is needed. This paper presents a new perspective of reuse based on improved retrieval techniques for semantic content (knowledge). This approach, called Universal Knowledge Reuse Methodology (UKRM), drops the investment costs needed in systematic reuse, including the cost of traceability in the process, and reduces the chaos of ad-hoc reuse. UKRM makes reuse independent of the type of content, the context where it will be reused, and even the user that demands it. The paper includes an incremental experiment in order to validate the feasibility of this proposal.


Reuse Systematic reuse Ad-hoc reuse Knowledge reuse Reuse methodology Semantic repositories ROI problems Reuse and integration in domain transference 


  1. Abecker, A., Bernardi, A., Hinkelmann, K., Kuhn, O., & Sintek, M. (1998). Towards a technology for organisational memories. IEEE Intelligent Systems, 13(3), 30–34.Google Scholar
  2. Ackoff, R. L. (1989). From data to wisdom. Journal of Applied Systems Analysis, 16, 3–9.Google Scholar
  3. Antunes, B., Seco, N., & Gomes, P. (2007). Using ontologies for software development knowledge reuse. In: Neves J., Santos M.F., Machado J.M. (eds) Progress in Artificial Intelligence. EPIA 2007. Lecture Notes in Computer Science, 4874. Springer, Berlin, HeidelbergGoogle Scholar
  4. Baeza-Yates, R. A., & Ribeiro-Neto, B. (1999). Modern information retrieval. Addison Wesley Longman Limited Publishing Co., Inc., Boston, MAGoogle Scholar
  5. Baxter, D., Gao, J., Case, K., Harding, J., Young, B., Cochrane, S., & Dani, S. (2007). An engineering design knowledge reuse methodology using process modelling. Research in Engineering Design, 18(1), 37–48.Google Scholar
  6. Baxter, D., Gao, J., & Roy, R. (2008). Design process knowledge reuse challenges and issues. Computer-Aided Design and Applications, 5(6), 942–952.Google Scholar
  7. Bechofer, S., & Goble, C. (2001). Thesaurus construction through knowledge representation. Data & Knowledge Engineering, 37, 25–45.Google Scholar
  8. Bellinger, G., Castro, D., & Mills, A. (2004). Data, information, knowledge, and wisdom.
  9. Brachman, R. J. (1983). What IS-A is and isn't. And analysis of taxonomic links in semantic networks. Computer, 16(10), 30–36.Google Scholar
  10. Brayton, G.N. (1983). Simplified method of measuring productivity identifies opportunities for increasing it. Industrial Engineering. (February): pp. 49-56.Google Scholar
  11. Buckingham Shum, S. (1998). Negotiating the construction of organisational memories. In U. M. Borghoff & R. Pareschi (Eds.), Information Technology for Knowledge Management (pp. 55–78). Berlin: Springer.Google Scholar
  12. Buckley, C., & Voorhees, E. M. (2005). Retrieval system evaluation. In TREC: Experiment and evaluation in information retrieval (pp. 53–75). Cambridge: MIT Press.Google Scholar
  13. Chalé-Góngora, G., Llorens, J. Gallego, E. (2017). Your wish, my command – Speeding up projects in the transportation industry using ontologies. INCOSE international symposium. Session 7 track 5. Transportation.Google Scholar
  14. Chitnis M., Tiwari P., Ananthamurthy L. (2003). UML Tools.
  15. Davenport, T., & Prusak, L. (1998). Working knowledge: How organizations manage what they know. Boston Massachusetts: Harvard Business School Press.Google Scholar
  16. Davis, R., Shrobe, H., & Szolovits, P. (1993). What is a knowledge representation? AI Magazine, 14(1), 17–33.Google Scholar
  17. Demian, P., Fruchter, R. (2001). CoMem: Knowledge reuse from a corporate memory. Stanford University Thesis.Google Scholar
  18. Dretske, F. I. (1981). Knowledge and the flow of information. Cambridge: The MIT Press/Bradford. Books.Google Scholar
  19. Dutton E. S. (1997). Effects of knowledge reuse on the spacecraft development process. Master's thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, June 1997.Google Scholar
  20. Esteban J. (2007). Survey of model-based systems engineering (MBSE) methodologies. Jet propulsionlaboratory, California Institute of Technology, Pasedena, CA.Google Scholar
  21. Exman, I., Llorens, J., Fraga, A. (2015). Jose María Álvarez Rodríguez: SKYWare: The Unavoidable Convergence of Software towards Runnable Knowledge. J. UCS 21(11), 1405–1424.Google Scholar
  22. Floridi, L. (2005). Is semantic information meaningful data? Philosophy and Phenomenological Research, 70(2), 351–370.Google Scholar
  23. Fowler, J. (2003). UML Distilled: A brief guide to the standard object modeling language. Addison-Wesley professional. 3rd edition. ISBN-13: 978-0321193681.Google Scholar
  24. Fraga, Anabel. (2010). Universal knowledge reuse methodology. PhD Dissertation in the Carlos III of Madrid University.Google Scholar
  25. Fraga, A. (2015). Quality of requirements in the industrial environment. Software Knowledge Workshop. IC3K Conference.Google Scholar
  26. Fraga, A. (2016). Systems engineering in the industrial environment: Requirements engineering processes. Software Knowledge Workshop. IC3K Conference.Google Scholar
  27. Fraga, A. (2017) Extraction of patterns using NLP: Genetic deafness. SEKE, 428–431.Google Scholar
  28. Frakes, W., & Kang, K. (2005). Software reuse research: Status and future. IEEE Transactions on Software Engineering, 31(7), 529–536.Google Scholar
  29. Frakes, W., Prieto-Diaz, R., & Fox, C. (1998). DARE: Domain analysis and reuse environment. Annals of Software Engineering, 5(1998), 125–141.Google Scholar
  30. Gallego, E. et al. (2016) Requirements quality analysis: A successful case study in the industry. CSDM, 187–201.Google Scholar
  31. Gettier, E. (1983). Is justified true belief knowledge? Analysis, 23, 121–123.Google Scholar
  32. Hill et al. (2002). Integration of Knowledge Organization Systems into Digital Library Architectures. ASIST SigCR - Last visited on 15th of November of 2007.
  33. Hofkirchner, W. (1999). Towards a unified theory of information. The merging of second-order cybernetics and semiotics into a single and comprehensive information science. In: 15e Congrès International de Cybernétique, Namur 1998, Namur, pp. 175–180.Google Scholar
  34. Hummel, O., Janjic, W., Atkinson, C. Code conjurer: Pulling reusable software out of thin air. IEEE Software. September/October 2008.Google Scholar
  35. Janée G., Ikeda S., Hill L. (2002). ADL Thesaurus Protocol v1.0. Last visited on 15th of November of 2007.
  36. Jorgenson, D. W., & Griliches, Z. (1967). The explanation of productivity change. Review of Economic Studies, 34(99), 249–283.Google Scholar
  37. Karlsson E.-A. (1995). Software reuse: A holistic approach. Even-André Karlsson (Ed.). JohnWiley & Sons, Inc., New York, USA.Google Scholar
  38. KRAFT: Knowledge Fusion from Distributed Databases and Knowledge Bases. (2000)
  39. Kuhn, O., & Abecker, A. (1997). Corporate memories for knowledge Management in Industrial Practice: Prospects and challenges. Journal of Universal Computer Science, 3(8), 929–954.Google Scholar
  40. J. Llorens, J. Morato, G. Genova (2004). RSHP: An information representation model based on relationships.” In E. Damiani, L. C. Jain, M. Madravio (Eds.), Soft Computing in Software Engineering (Studies in Fuzziness and Soft Computing Series, Vol. 159) (pp 221–253). Berlin: Springer. Available for reviewers in
  41. Llorens, Juan; Fuentes, José M.; Prieto-Diaz, Rubén; Astudillo, Hernán. 2006. Incremental Software Reuse. International Conference of Software Reuse (ICSR2006). Torino, Italy.Google Scholar
  42. Lynne, M. (2001). Toward a Theory of Knowledge Reuse: Types of Knowledge Reuse Situations and factors in Reuse Success. Journal of Management Information Systems, 18(1), 57–94.Google Scholar
  43. Majchrzak, A., Neece, O. E., Cooper, L. P. (2001). Knowledge reuse for innovation – the missing focus in knowledge management. Academy of Management Proceedings.
  44. Mäki, Eerikki. (2008). Exploring and exploiting knowledge. Research on knowledge processes in knowledge-intensive organizations. Helsinki University of Technology, Department of Industrial Engineering and Management doctoral dissertation series. pp. 182Google Scholar
  45. Manning, C., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval. Cambridge: Cambridge University Press.Google Scholar
  46. Martin, J. N. (1996). Systems engineering guidebook: A process for developing systems and products. Boca Raton: CRC Press, Inc..Google Scholar
  47. Merriam Webster Dictionary Online II (2017) Universal Term Definition. (Last visited on 15th of January of 2014).
  48. Moffat, A., & Zobel, J. (2008). Rank-biased precision for measurement of retrieval effectiveness. ACM Transactions on Information Systems, 27(1), 1–27.Google Scholar
  49. Morisio, M., Ezran, M., & Tully, C. (2002). Success and failure factors in software reuse. IEEE Transactions on Software Engineering, 28(4), 340–357.Google Scholar
  50. Neighbors, J. M. (1994). "Reuse so far: phasing in a revolution", Software reuse: Advances in Software Reusability. Proceedings. Third International Conference on, pp. 191–192Google Scholar
  51. Pérez-Montoro Gutiérrez, M. (2001). La representación y organización del conocimiento : metodologías, modelos y aplicaciones. Actas del V Congreso ISKO-España. Alcalá de Henares, MadridGoogle Scholar
  52. Pérez-Montoro Gutiérrez, Mario (2004). “Identificación y representación del conocimiento organizacional: la propuesta epistemológica clásica”. Barcelona: IN3-UOC (Discussion Paper Series; DP04–01). 29 págs. <>. (Last visited on September of 2004).
  53. Pérez-Montoro Gutiérrez, M. (2007). The Phenomenon of Information. Lanham (Maryland): Scarecrow Press.Google Scholar
  54. Pérez-Montoro Gutiérrez, M., & Campos Havidich, M. (2002). Representación y procesamiento del conocimiento. Universitat Oberta de Catalunya.Google Scholar
  55. Poulin, J. S., Caruso, J. M., & Hancock, D. R. (1993). The business case for software reuse. IBM Systems Journal, 32(4), 567–594.Google Scholar
  56. Salton, G., Fox, E. A., Wu. H. (1983). Extended Bolean Information Retrieval”. Communications of the ACM, 26(11)Google Scholar
  57. Sanchez-Cuadrado, S., Morato-Lara, J., Palacios-Madrid, V., Llorens-Morillo, J., & Moreiro-González, J.-A. (2007). De repente, ¿todos hablamos de ontologías? El Profesional de la Información 16(6), 562–568.Google Scholar
  58. Sowa, J. F. (2000). Knowledge Representation: Logical, Philosophical, and Computational Foundations. New York: Brooks/Cole.Google Scholar
  59. Sturgeon, S., Martin, G. G. F. Crayling, A. C. (1998). “Epistemology”. En Crayling, A. C. (ed.) Philosophy 1 (Capítulo 1, p. 7–26). Oxford: Oxford University Press.Google Scholar
  60. Sumanth, D. (1979). Productivity measurement and evaluation models for manufacturing companies (p. 291). Chicago: Illinois Institute of Technology.Google Scholar
  61. Turpin, Andrew; Scholer, Falk(2006) User performance versus precision measures for simple search tasks. Proceedings of the 9th Annual international ACM SIGIR Conference on Research and Development in information Retrieval (Seattle, Washington, USA, August 06–11, 2006) (New York, NY: ACM): 11–18.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de InformáticaUniversidad Carlos III de MadridMadridSpain

Personalised recommendations