Uncovering the effect of dominant attributes on community topology: A case of facebook networks

Article

Abstract

Community structure points to structural patterns and reflects organizational or functional associations of networks. In real networks, each node usually contains multiple attributes representing the node’s characteristics. It is difficult to identify the dominant attributes, which have definitive effects on community formation. In this paper, we obtain the overlapping communities using game-theoretic clustering and focus on identifying the dominant attributes in terms of each community. We uncover the association of attributes to the community topology by defining dominance ratio and applying Pearson correlation. We test our method on Facebook data of 100 universities and colleges in the U.S. The study enables an integrating observation on how the offline lives infer online consequences. The results showed that people in class year 2010 and people studying in the same major tend to form denser and smaller groups on Facebook. Such information helps e-marketing campaigns target right customers based on demographic information and without the knowledge of underlying social networks.

Keywords

Dominant attribute Community detection Facebook Game-theoretic clustering Dominance ratio Community topology 

References

  1. Ahn, Y. Y., Bagrow, J. P., & Lehmann, S. (2010). Link communities reveal multiscale complexity in networks. Nature, 466(7307), 761–764.CrossRefGoogle Scholar
  2. Albert, R., & Barabási, A. L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), 47.CrossRefGoogle Scholar
  3. Baumes, J., Goldberg, M. K., Krishnamoorthy, M. S., Magdon-Ismail, M., & Preston, N. (2005). Finding communities by clustering a graph into overlapping subgraphs. IADIS AC, 5, 97–104.Google Scholar
  4. Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008.CrossRefGoogle Scholar
  5. Bonneau, J., Anderson, J., Anderson, R., & Stajano, F. (2009). Eight friends are enough: social graph approximation via public listings. In Proceedings of the Second ACM EuroSys Workshop on Social Network Systems (pp. 13–18). ACM.Google Scholar
  6. Cavdur, F., & Kumara, S. (2014a). A network view of business systems. Information Systems Frontiers, 16(1), 153–162.CrossRefGoogle Scholar
  7. Cavdur, F., & Kumara, S. (2014b). Network mining: applications to business data. Information Systems Frontiers, 16(3), 473–490.CrossRefGoogle Scholar
  8. Chen, J., & Yuan, B. (2006). Detecting functional modules in the yeast protein–protein interaction network. Bioinformatics, 22(18), 2283–2290.CrossRefGoogle Scholar
  9. Clauset, A., Newman, M. E., & Moore, C. (2004). Finding community structure in very large networks. Physical Review E, 70(6), 066111.CrossRefGoogle Scholar
  10. Constantinides, E., & Fountain, S. J. (2008). Web 2.0: conceptual foundations and marketing issues. Journal of Direct, Data and Digital Marketing Practice, 9(3), 231–244.CrossRefGoogle Scholar
  11. Eckmann, J. P., & Moses, E. (2002). Curvature of co-links uncovers hidden thematic layers in the world wide web. Proceedings of the National Academy of Sciences, 99(9), 5825–5829.CrossRefGoogle Scholar
  12. Evans, T. S., & Lambiotte, R. (2009). Line graphs, link partitions, and overlapping communities. Physical Review E, 80(1), 016105.CrossRefGoogle Scholar
  13. Flake, G. W., Lawrence, S., Giles, C. L., & Coetzee, F. M. (2002). Self-organization and identification of web communities. Computer, 35(3), 66–70.CrossRefGoogle Scholar
  14. Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3), 75–174.CrossRefGoogle Scholar
  15. Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99(12), 7821–7826.CrossRefGoogle Scholar
  16. Gregory, S. (2010). Finding overlapping communities in networks by label propagation. New Journal of Physics, 12(10), 103018.CrossRefGoogle Scholar
  17. Guimera, R., & Amaral, L. A. N. (2005). Functional cartography of complex metabolic networks. Nature, 433(7028), 895–900.CrossRefGoogle Scholar
  18. Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm. Applied Statistics, 100–108.Google Scholar
  19. Lancichinetti, A., Fortunato, S., & Kertész, J. (2009). Detecting the overlapping and hierarchical community structure in complex networks. New Journal of Physics, 11(3), 033015.CrossRefGoogle Scholar
  20. Lee Rodgers, J., & Nicewander, W. A. (1988). Thirteen ways to look at the correlation coefficient. The American Statistician, 42(1), 59–66.CrossRefGoogle Scholar
  21. Luce, R. D. (1950). Connectivity and generalized cliques in sociometric group structure. Psychometrika, 15(2), 169–190.CrossRefGoogle Scholar
  22. Mandala, S., Kumara, S., & Chatterjee, K. (2014). A Game-Theoretic Approach to Graph Clustering. INFORMS Journal on Computing.Google Scholar
  23. Matsuda, H., Ishihara, T., & Hashimoto, A. (1999). Classifying molecular sequences using a linkage graph with their pairwise similarities. Theoretical Computer Science, 210(2), 305–325.CrossRefGoogle Scholar
  24. Mislove, A., Viswanath, B., Gummadi, K. P., & Druschel, P. (2010). You are who you know: inferring user profiles in online social networks. In Proceedings of the third ACM international conference on Web search and data mining (pp. 251–260). ACM.Google Scholar
  25. Newman, M. E. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167–256.CrossRefGoogle Scholar
  26. Newman, M. E. (2004). Fast algorithm for detecting community structure in networks. Physical Review E, 69(6), 066133.CrossRefGoogle Scholar
  27. Newman, M. E., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69(2), 026113.CrossRefGoogle Scholar
  28. Palla, G., Derényi, I., Farkas, I., & Vicsek, T. (2005). Uncovering the overlapping community structure of complex networks in nature and society. Nature, 435(7043), 814–8.CrossRefGoogle Scholar
  29. Papadopoulos, S., Kompatsiaris, Y., Vakali, A., & Spyridonos, P. (2012). Community detection in social media. Data Mining and Knowledge Discovery, 24(3), 515–554.CrossRefGoogle Scholar
  30. Porter, M. A. (2011). Facebook 100 Data Set in Quantum Chaotic Thoughts. Retrieved from http://masonporter.blogspot.com/2011/02/facebook100-data-set.html. Accessed May 2011.
  31. Pujol, J. M., Erramilli, V., & Rodriguez, P. (2009). Divide and conquer: Partitioning online social networks. arXiv preprint arXiv:0905.4918.Google Scholar
  32. Raghavan, U. N., Albert, R., & Kumara, S. (2007). Near linear time algorithm to detect community structures in large-scale networks. Physical Review E, 76(3), 036106.CrossRefGoogle Scholar
  33. Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., McVean, G., Turnbaugh, P. J., Lander, E. S., Mitzenmacher, M., & Sabeti, P. C. (2011). Detecting novel associations in large data sets. Science, 334(6062), 1518–1524.CrossRefGoogle Scholar
  34. Rosvall, M., & Bergstrom, C. T. (2007). An information-theoretic framework for resolving community structure in complex networks. Proceedings of the National Academy of Sciences, 104(18), 7327–7331.CrossRefGoogle Scholar
  35. Rosvall, M., & Bergstrom, C. T. (2008). Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences, 105(4), 1118–1123.CrossRefGoogle Scholar
  36. Sarmanov, O. V. (1962). Maximum correlation coefficient (nonsymmetric case). Selected Translations in Mathematical Statistics and Probability, 2, 207–210.Google Scholar
  37. Seidman, S. B. (1983). Network structure and minimum degree. Social Networks, 5(3), 269–287.CrossRefGoogle Scholar
  38. Traud, A. L., Kelsic, E. D., Mucha, P. J., & Porter, M. A. (2011). Comparing community structure to characteristics in online collegiate social networks. SIAM Review, 53(3), 526–543.CrossRefGoogle Scholar
  39. Traud, A. L., Mucha, P. J., & Porter, M. A. (2012). Social structure of Facebook networks. Physica A: Statistical Mechanics and its Applications, 391(16), 4165–4180.CrossRefGoogle Scholar
  40. Trusov, M., Bucklin, R. E., & Pauwels, K. (2009). Effects of word-of-mouth versus traditional marketing: findings from an internet social networking site. Journal of Marketing, 73(5), 90–102.CrossRefGoogle Scholar
  41. Wei, F., Qian, W., Wang, C., & Zhou, A. (2009). Detecting overlapping community structures in networks. World Wide Web, 12(2), 235–261.CrossRefGoogle Scholar
  42. Xie, J., Szymanski, B. K., & Liu, X. (2011). Slpa: Uncovering overlapping communities in social networks via a speaker-listener interaction dynamic process. In Data Mining Workshops (ICDMW), 2011 I.E. 11th International Conference on (pp. 344–349). IEEE.Google Scholar
  43. Xu, X., Yuruk, N., Feng, Z., & Schweiger, T. A. (2007). Scan: a structural clustering algorithm for networks. In Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 824–833). ACM.Google Scholar
  44. Zhang, S., Wang, R. S., & Zhang, X. S. (2007). Identification of overlapping community structure in complex networks using fuzzy c-means clustering. Physica A: Statistical Mechanics and its Applications, 374(1), 483–490.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Industrial & Manufacturing EngineeringThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Kellogg School of Management and Northwestern Institute on Complex SystemsNorthwestern UniversityEvanstonUSA

Personalised recommendations