Information Systems Frontiers

, Volume 20, Issue 4, pp 825–839 | Cite as

Behavioral data mining to produce novel and serendipitous friend recommendations in a social bookmarking system

  • Matteo Manca
  • Ludovico Boratto
  • Salvatore Carta


In the last few years, social media systems have experienced a fast growth. The amount of content shared in these systems increases fast, leading users to face the well known “interaction overload” problem, i.e., they are overwhelmed by content, so it becomes difficult to come across interesting items. To overcome this problem, social recommender systems have been recently designed and developed in order to filter content and recommend to users only interesting items. This type of filtering is usually affected by the “over-specialization” problem, which is related to recommendations that are too similar to the items already considered by the users. This paper proposes a friend recommender system that operates in the social bookmarking application domain and is based on behavioral data mining, i.e., on the exploitation of the users activity in a social bookmarking system. Experimental results show how this type of mining is able to produce accurate friend recommendations, allowing users to get to know bookmarked resources that are both novel and serendipitous. Using this approach, the impact of the “interaction overload” and the “over-specialization” problems is strongly reduced.


Social bookmarking Friend recommendation Behavioral data mining Novelty Serendipity 


  1. Agichtein, E., Brill, E., & Dumais, S. (2006). Improving web search ranking by incorporating user behavior information. In Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’06, pp. 19–26. ACM, New York, NY, USA. doi: 10.1145/1148170.1148177.
  2. Arru, G., Gurini, D.F., Gasparetti, F., Micarelli, A., & Sansonetti, G. (2013). Signal-based user recommendation on twitter. In Carr, L., Laender, A.H.F., Lóscio, B.F., King, I., Fontoura, M., Vrandecic, D., Aroyo, L., de Oliveira, J.P.M., Lima, F., & Wilde, E. (Eds.), 22nd International World Wide Web Conference, WWW ’13, Rio de Janeiro, Brazil, May 13-17, 2013, Companion Volume, pp. 941–944. International World Wide Web Conferences Steering Committee / ACM.Google Scholar
  3. Barbieri, N., Bonchi, F., & Manco, G. (2014). Who to follow and why: Link prediction with explanations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’14, pp. 1266–1275. ACM, New York, NY, USA. doi: 10.1145/2623330.2623733.
  4. Boratto, L., Carta, S., Manca, M., Mulas, F., Pilloni, P., Pinna, G., & Vargiu, E. (2013). A clustering approach for tag recommendation in social environments. International Journal of E-Business Development, 3, 126–136.Google Scholar
  5. Boratto, L., Carta, S., & Vargiu, E. (2009). Ratc: A robust automated tag clustering technique. In E-Commerce and Web Technologies, 10th International Conference, EC-Web 2009. Proceedings, Lecture Notes in Computer Science, vol. 5692, pp. 324–335. Springer.Google Scholar
  6. Boyd, D.M., & Ellison, N.B. (2007). Social network sites: Definition, history, and scholarship. Journal Computer-Mediated Communication, 13(1), 210–230.CrossRefGoogle Scholar
  7. Breese, J.S., Heckerman, D., & Kadie, C. (1998). Empirical analysis of predictive algorithms for collaborative filtering. In Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence, UAI’98, 43–52. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
  8. Brzozowski, M.J., & Romero, D.M. (2011). Who should i follow? recommending people in directed social networks. In Adamic, L.A., Baeza-Yates, R.A., & Counts, S. (Eds.), Proceedings of the Fifth International Conference on Weblogs and Social Media, Barcelona, Catalonia, Spain, July 17-21, 2011: The AAAI Press.Google Scholar
  9. Buckland, M., & Gey, F. (1994). The relationship between recall and precision. Journal of the American Society for Information Science, 45(1), 12–19. doi: 10.1002/(SICI)1097-4571(199401)45:1%3C12::AID-ASI2%3E3.0.CO;2-L.CrossRefGoogle Scholar
  10. Cantador, I., Brusilovsky, P., & Kuflik, T. (2011). Second workshop on information heterogeneity and fusion in recommender systems (hetrec2011). In Mobasher, B., Burke, R.D., Jannach, D., & Adomavicius, G. (Eds.), Proceedings of the 2011 ACM Conference on Recommender Systems, RecSys 2011, Chicago, IL, USA, October 23-27, 2011, pp. 387–388: ACM.Google Scholar
  11. Centeno, R., Hermoso, R., & Fasli, M. (2015). On the inaccuracy of numerical ratings: Dealing with biased opinions in social networks. Information Systems Frontiers, 17(4), 809–825. doi: 10.1007/s10796-014-9526-1.CrossRefGoogle Scholar
  12. Chang, W.L., Diaz, A., & Hung, P. (2014). Estimating trust value: A social network perspective. Information Systems Frontiers, 1–20. doi: 10.1007/s10796-014-9519-0.
  13. Chen, J., Geyer, W., Dugan, C., Muller, M.J., & Guy, I. (2009). Make new friends, but keep the old: recommending people on social networking sites. In D.R.O. Jr., Arthur, R.B., Hinckley, K., Morris, M.R., Hudson, S.E., & Greenberg, S. (Eds.), Proceedings of the 27th International Conference on Human Factors in Computing Systems, CHI 2009, Boston, MA, USA, April 4-9, 2009, pp. 201–210: ACM.Google Scholar
  14. Chen, R., & Sharma, S.K. (2013). Self-disclosure at social networking sites: An exploration through relational capitals. Information Systems Frontiers, 15(2), 269–278. doi: 10.1007/s10796-011-9335-8.CrossRefGoogle Scholar
  15. Farooq, U., Kannampallil, T.G., Song, Y., Ganoe, C.H., Carroll, J.M., & Giles, C.L. (2007). Evaluating tagging behavior in social bookmarking systems: metrics and design heuristics. In Gross, T., & Inkpen, K. (Eds.), Proceedings of the 2007 International ACM SIGGROUP Conference on Supporting Group Work, GROUP 2007, Sanibel Island, Florida, USA, November 4-7, 2007 (pp. 351–360): ACM.Google Scholar
  16. Fogués, R.L., Such, J.M., Espinosa, A., & Garcia-Fornes, A. (2014). Bff: A tool for eliciting tie strength and user communities in social networking services. Information Systems Frontiers, 16(2), 225–237. doi: 10.1007/s10796-013-9453-6.CrossRefGoogle Scholar
  17. Gupta, P., Goel, A., Lin, J., Sharma, A., Wang, D., & Zadeh, R. (2013). Wtf: the who to follow service at twitter. In Schwabe, D., Almeida, V.A.F., Glaser, H., Baeza-Yates, R.A., & Moon, S.B. (Eds.), 22nd International World Wide Web Conference, WWW ’13, Rio de Janeiro, Brazil, May 13-17, 2013, pp. 505–514. International World Wide Web Conferences Steering Committee / ACM.Google Scholar
  18. Guy, I., Chen, L., & Zhou, M.X. (2013). Introduction to the special section on social recommender systems. ACM TIST, 4(1), 7.Google Scholar
  19. Guy, I., Ronen, I., & Wilcox, E. (2009). Do you know?: recommending people to invite into your social network. In Conati, C., Bauer, M., Oliver, N., & Weld, D.S. (Eds.), Proceedings of the 2009 International Conference on Intelligent User Interfaces, February 8-11, 2009, Sanibel Island, Florida, USA (pp. 77–86): ACM.Google Scholar
  20. Hannon, J., Bennett, M., & Smyth, B. (2010). Recommending twitter users to follow using content and collaborative filtering approaches. In Amatriain, X., Torrens, M., Resnick, P., & Zanker, M. (Eds.), Proceedings of the 2010 ACM Conference on Recommender Systems, RecSys 2010, Barcelona, Spain, September 26-30, 2010 (pp. 199–206): ACM.Google Scholar
  21. Herlocker, J.L., Konstan, J.A., Borchers, A., & Riedl, J. (1999). An algorithmic framework for performing collaborative filtering. In SIGIR ’99: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, August 15-19, 1999, Berkeley, CA, USA, pp. 230–237. ACM.Google Scholar
  22. Iaquinta, L, de Gemmis, M., Lops, P., Semeraro, G., Filannino, M., & Molino, P. (2008). Introducing serendipity in a content-based recommender system. In HIS, pp. 168–173. IEEE Computer Society.Google Scholar
  23. Konstan, J.A., McNee, S.M., Ziegler, C.N., Torres, R., Kapoor, N., & Riedl, J. (2006). Lessons on applying automated recommender systems to information-seeking tasks. In Proceedings, The Twenty-First National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference, July 16-20, 2006, Boston, Massachusetts, USA, pp. 1630–1633. AAAI Press.Google Scholar
  24. Liben-Nowell, D., & Kleinberg, J.M. (2003). The link prediction problem for social networks. In Proceedings of the 2003 ACM CIKM International Conference on Information and Knowledge Management, New Orleans, Louisiana, USA, November 2-8, 2003, pp. 556–559. ACM.Google Scholar
  25. Lops, P, de Gemmis, M., & Semeraro, G. (2011). Content-based recommender systems: State of the art and trends. In Ricci, F., Rokach, L., Shapira, B., & Kantor, P.B. (Eds.), Recommender Systems Handbook (pp. 73–105). Springer.Google Scholar
  26. Manca, M., Boratto, L., & Carta, S. (2014). Mining user behavior in a social bookmarking system - A delicious friend recommender system. In Helfert, M., Holzinger, A., Belo, O., & Francalanci, C. (Eds.), DATA 2014 - Proceedings of 3rd International Conference on Data Management Technologies and Applications, Vienna, Austria, 29-31 August, 2014 (pp. 331–338): SciTePress.Google Scholar
  27. Marlow, C., Naaman, M., Boyd, D., & Davis, M. (2006). Ht06, tagging paper, taxonomy, flickr, academic article, to read. In Proceedings of the Seventeenth Conference on Hypertext and Hypermedia, HYPERTEXT ’06, pp. 31–40. ACM, New York, NY, USA. doi: 10.1145/1149941.1149949.
  28. Mobasher, B., Cooley, R., & Srivastava, J. (2000). Automatic personalization based on web usage mining. Communications of the ACM, 43(8), 142–151. doi: 10.1145/345124.345169.CrossRefGoogle Scholar
  29. Pearson, K. (1896). Mathematical contributions to the theory of evolution. iii. regression, heredity and panmixia. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Math. or Phys. Character (1896–1934), 187, 253–318.Google Scholar
  30. Quercia, D., & Capra, L. (2009). Friendsensing: recommending friends using mobile phones. In Bergman, L.D., Tuzhilin, A., Burke, R.D., Felfernig, A., & Schmidt-Thieme, L. (Eds.), Proceedings of the 2009 ACM Conference on Recommender Systems, RecSys 2009, New York, NY, USA, October 23-25, 2009 (pp. 273–276): ACM.Google Scholar
  31. Ratiu, F. (2008). Facebook: People you may know.
  32. Ricci, F., Rokach, L., & Shapira, B. (2011). Introduction to recommender systems handbook. In Ricci, F., Rokach, L., Shapira, B., & Kantor, P.B. (Eds.), Recommender Systems Handbook (pp. 1–35): Springer.Google Scholar
  33. Shani, G., & Gunawardana, A. (2011). Evaluating recommendation systems. In Ricci, F., Rokach, L., Shapira, B., & Kantor, P.B. (Eds.), Recommender systems handbook (pp. 257–297). Springer.Google Scholar
  34. Shih, H.P., & Huang, E. (2014). Influences of web interactivity and social identity and bonds on the quality of online discussion in a virtual community. Information Systems Frontiers, 16(4), 627–641. doi: 10.1007/s10796-012-9376-7.CrossRefGoogle Scholar
  35. Simon, H.A. (1971). Designing organizations for an information rich world. In Greenberger, M. (Ed.), Computers, communications, and the public interest (pp. 37–72). Baltimore: Johns Hopkins Press.Google Scholar
  36. Xiong, H., Shekhar, S., Tan, P.N., & Kumar, V. (2004). Exploiting a support-based upper bound of pearson’s correlation coefficient for efficiently identifying strongly correlated pairs. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’04, pp. 334–343. ACM, New York, NY, USA. doi: 10.1145/1014052.1014090.
  37. Zhang, M., & Hurley, N. (2008). Avoiding monotony: improving the diversity of recommendation lists. In RecSys , 123–130. ACM.Google Scholar
  38. Zhou, T.C., Ma, H., Lyu, M.R., & King, I. (2010). Userrec: A user recommendation framework in social tagging systems. In Fox, M., & Poole, D. (Eds.), Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010: AAAI Press.Google Scholar
  39. Ziegler, C.N., McNee, S.M., Konstan, J.A., & Lausen, G. (2005). Improving recommendation lists through topic diversification. In Ellis, A., & Hagino, T. (Eds.), Proceedings of the 14th international conference on World Wide Web, WWW 2005, Chiba, Japan, May 10-14, 2005, pp. 22–32: ACM.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Matteo Manca
    • 1
  • Ludovico Boratto
    • 1
  • Salvatore Carta
    • 1
  1. 1.Dipartimento di Matematica e InformaticaUniversità di CagliariCagliariItaly

Personalised recommendations