Information Systems Frontiers

, Volume 18, Issue 6, pp 1217–1231 | Cite as

The development and application of e-Geoscience in China

  • Yunqiang Zhu
  • Peng Pan
  • Shifeng Fang
  • Li Da Xu
  • Jia Song
  • Jinqu Zhang
  • Min Feng


In the era of big data, scientific research is entering a key stage of scientific development under the guidance of a new paradigm, “e-Science”, and the core characteristics of which are collaboration and sharing. In the past decade, e-Science has rapidly developed around the world. There are now e-Science strategic plans, projects and extensive research activities on the national and international scales that encompass particle physics, astronomy, earth science, ecology, marine science, medicine, life sciences and other disciplines. However, there is no uniform and clear understanding of the essence, characteristics, infrastructure and application of e-Geoscience. This paper first discusses and analyzes the development of e-Science in a global context and then explores its development in China. Next, the development of e-Geoscience is discussed, particularly regarding the details of its design and implementation in China, including a conceptual model, a mode of application, a logical hierarchy, and functional and technical systems. Finally, the paper introduces a typical application, called the Northeast Asia Joint Scientific Exploration and Cooperative Research Platform (NAJSECRP), which is operating in research institutions in China, Russia and Mongolia. This platform can not only provide geodata and bibliographies and promote resource sharing but also provides a collaborative research platform for scientific exploration. In practice, this platform has been shown to save costs and improve the efficiency of transnational, interdisciplinary scientific exploration and cooperative research.


e-Science e-Geoscience Big data Information sharing Cloud computing Internet of Things (IoT) Northeast Asia 



This paper was jointly funded by the National Natural Science Foundation of China (No. 41371381 and No. 41201097), National Special Program on Basic Science and Technology Research of China (2013FY110900), Global Change Ecology Science and Technology Cloud of e-Science Special Program of Chinese Academy of Science, National Major Scientific Equipment Development Projects (2012YQ06002704), Science and Technology Project of Yunnan Province (2012CA021) and the Data Sharing Infrastructure of Earth System Science of China.


  1. AlSairafi, S., Emmanouil, F. S., Ghanem, M., Giannadakis, N., Guo, Y., Kalaitzopoulos, D., & Wendel, P. (2003). The design of discovery net: towards open grid services for knowledge discovery. International Journal of High Performance Computing Applications, 17(3), 297–315.CrossRefGoogle Scholar
  2. Becker, J., Delfmann, P., Dietrich, H. A., Steinhorst, M., & Eggert, M. (2014). Business process compliance checking–applying and evaluating a generic pattern matching approach for conceptual models in the financial sector. Information Systems Frontiers, 1–47. DOI:10.1007/s10796-014-9529-y.Google Scholar
  3. Berman, F., Fox, G., & Hey, A.J. (Eds.). (2003). Grid computing: making the global infrastructure a reality (Vol. 2). Wiley.Google Scholar
  4. Berriman, G. B., Deelman, E., Juve, G., Rynge, M., & Vöckler, J. S. (2013). he application of cloud computing to scientific workflows: a study of cost and performance. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1983), 20120066.CrossRefGoogle Scholar
  5. Bi, Z., & Cochran, D. (2014). Big data analytics with applications. Journal of Management Analytics, 1(4), 249–265.CrossRefGoogle Scholar
  6. Bosin, A., Dessí, N., & Pes, B. (2011). Extending the SOA paradigm to e-Science environments. Future Generation Computer Systems, 27(1), 20–31.CrossRefGoogle Scholar
  7. Camarinha-Matos, L. M., & Afsarmanesh, H. (2005). Collaborative networks: a new scientific discipline. Journal of Intelligent Manufacturing, 16(4–5), 439–452.CrossRefGoogle Scholar
  8. Cancian, M. H., Rabelo, R., & von Wangenheim, C. G. (2015). Collaborative business processes for enhancing partnerships among software services providers. Enterprise Information Systems, 9(5–6), 634–659.Google Scholar
  9. Chinese Academy of Sciences, Ministry of Education of the People's Republic of China & National Natural Science Foundation of China. China's e-Science Blue Book (2011). Beijing: Science Press, 2011.Google Scholar
  10. Cragin, M. H., Palmer, C. L., Carlson, J. R., & Witt, M. (2010). Data sharing, small science and institutional repositories. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1926), 4023–4038.CrossRefGoogle Scholar
  11. De Roure, D., Page, K. R., Fields, B., Crawford, T., Downie, J. S., & Fujinaga, I. (2011). An e-Research approach to Web-scale music analysis. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369, 3300–3317.CrossRefGoogle Scholar
  12. Deelman, E., Gannon, D., Shields, M., & Taylor, I. (2009). Workflows and e-Science: an overview of workflow system features and capabilities. Future Generation Computer Systems, 25(5), 528–540.CrossRefGoogle Scholar
  13. Duan, L., & Xiong, Y. (2015). Big data analytics and business analytics. Journal of Management Analytics, 2(1), 1–21.CrossRefGoogle Scholar
  14. Fang, S., Pei, H., Liu, Z., Beven, K., & Wei, Z. (2010). Water resources assessment and regional virtual water potential in the Turpan Basin, China. Water Resources Management, 24(13), 3321–3332.CrossRefGoogle Scholar
  15. Fang, S., Yan, J., Che, M., Zhu, Y., Liu, Z., Pei, H., & Lin, X. (2013). Climate change and the ecological responses in Xinjiang, China: model simulations and data analyses. Quaternary International, 311, 108–116.CrossRefGoogle Scholar
  16. Fang, S., Xu, L., Pei, H., Liu, Y., Liu, Z., Zhu, Y., Yan, J., & Zhang, H. (2014a). An integrated approach to snowmelt flood forecasting in water resource management. IEEE Transactions on Industrial Informatics, 10(1), 548–558.CrossRefGoogle Scholar
  17. Fang, S., Xu, L., Zhu, Y., Ahati, J., Pei, H., Yan, J., & Liu, Z. (2014b). An integrated system for regional environmental monitoring and management based on internet of things. IEEE Transactions on Industrial Informatics, 10(2), 1596–1605.CrossRefGoogle Scholar
  18. Fang, S., Xu, L., Zhu, Y., Liu, Y., Liu, Z., Pei, H., & Zhang, H. (2015). An integrated information system for snowmelt flood early-warning based on internet of things. Information Systems Frontiers, 17(2), 321–335.CrossRefGoogle Scholar
  19. Foster, I. (2005). Globus toolkit version 4: Software for service-oriented systems. In Network and parallel computing (pp. 2–13). Springer Berlin Heidelberg.Google Scholar
  20. Fox, G. (2002). E-science meets computational science and information technology. Computing in Science & Engineering, 4(4), 84–85.CrossRefGoogle Scholar
  21. Gosling, S. N., Bretherton, D., Haines, K., & Arnell, N. W. (2010). Global hydrology modelling and uncertainty: running multiple ensembles with a campus grid. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1926), 4005–4021.CrossRefGoogle Scholar
  22. Gungor, V. C., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C., & Hancke, G. P. (2011). Smart grid technologies: communication technologies and standards. IEEE Transactions on Industrial Informatics, 7(4), 529–539.CrossRefGoogle Scholar
  23. Halfpenny, P., & Procter, R. (2010). The e-social science research agenda. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1925), 3761–3778.CrossRefGoogle Scholar
  24. He, W., & Xu, L. (2015). A state-of-the-art survey of cloud manufacturing. International Journal of Computer Integrated Manufacturing, 28(3), 239–250.CrossRefGoogle Scholar
  25. He, W., Yan, G., & Da Xu, L. (2014). Developing vehicular data cloud services in the IoT environment. IEEE Transactions on Industrial Informatics, 10(2), 1587–1595.CrossRefGoogle Scholar
  26. Hey, T., & Trefethen, A. E. (2002). The UK e-science core programme and the grid. Future Generation Computer Systems, 18(8), 1017–1031.CrossRefGoogle Scholar
  27. Hey, T., & Trefethen, A. E. (2005). Cyberinfrastructure for e-Science. Science, 308(5723), 817–821.CrossRefGoogle Scholar
  28. Jankowski, N. W. (2007). Exploring e-Science: an introduction. Journal of Computer-Mediated Communication, 12(2), 549–562.CrossRefGoogle Scholar
  29. Jansson, K., Uoti, M., & Karvonen, I. (2015). Services supporting collaborative alignment of engineering networks. Enterprise Information Systems, 9(5–6), 499–527.Google Scholar
  30. Jung, J. J., Chang, Y. S., Liu, Y., & Wu, C. C. (2012). Advances in intelligent grid and cloud computing. Information Systems Frontiers, 14(4), 823–825.CrossRefGoogle Scholar
  31. Kueffer, C., Underwood, E., Hadorn, G. H., Holderegger, R., Lehning, M., Pohl, C., & Edwards, P. (2012). Enabling effective problem-oriented research for sustainable development. Ecology and Society, 17(4), 8.CrossRefGoogle Scholar
  32. Li, C., & Li, L. (2012). An efficient resource allocation for maximizing benefit of users and resource providers in ad hoc grid environment. Information Systems Frontiers, 14(5), 987–998.CrossRefGoogle Scholar
  33. Li, G., & Wei, M. (2014). Everything-as-a-service platform for on-demand virtual enterprises. Information Systems Frontiers, 16(3), 435–452.CrossRefGoogle Scholar
  34. Li, S., Da Xu, L., & Zhao, S. (2015). The internet of things: a survey. Information Systems Frontiers, 17(2), 243–259.CrossRefGoogle Scholar
  35. Lynch, C. (2008). Big data: how do your data grow? Nature, 455(7209), 28–29.CrossRefGoogle Scholar
  36. Malleson, N., & Birkin, M. (2011). Towards victim-oriented crime modelling in a social science e-infrastructure. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1949), 3353–3371.CrossRefGoogle Scholar
  37. Pang, Z., Zheng, L., Tian, J., Kao-Walter, S., Dubrova, E., & Chen, Q. (2015). Design of a terminal solution for integration of in-home health care devices and services towards the internet-of-things. Enterprise Information Systems, 9(1), 86–116.CrossRefGoogle Scholar
  38. Peachey, T., Mashkina, E., Lee, C. Y., Enticott, C., Abramson, D., Bond, A. M., & Kennedy, G. F. (2011). Leveraging e-Science infrastructure for electrochemical research. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1949), 3336–3352.CrossRefGoogle Scholar
  39. Ribes, D., & Bowker, G. C. (2008). 17 organizing for multidisciplinary collaboration: the case of the geosciences network. In scientific collaboration on the internet (pp. 311–330). Cambridge: the MIT Press.Google Scholar
  40. Scholl, T., Bauer, B., Gufler, B., Kuntschke, R., Reiser, A., & Kemper, A. (2009). Scalable community-driven data sharing in e-science grids. Future Generation Computer Systems, 25(3), 290–300.CrossRefGoogle Scholar
  41. Sekiguchi, S., Tanaka, Y., Kojima, I., Yamamoto, N., Yokoyama, S., Tanimura, Y., & Tsuchida, S. (2008). Design principles and IT overviews of the GEO grid. Systems Journal, IEEE, 2(3), 374–389.CrossRefGoogle Scholar
  42. Stegaru, G., Danila, C., Sacala, I. S., Moisescu, M., & Stanescu, A. M. (2015). E-Services quality assessment framework for collaborative networks. Enterprise Information Systems, 9(5–6), 583–606.Google Scholar
  43. Sun, Y., Tan, W., Li, L., Shen, W., Bi, Z., & Hu, X. (2015). A new method to identify collaborative partners in social service provider networks. Information Systems Frontiers, 1–14. doi: 10.1007/s10796-015-9547-4.Google Scholar
  44. Taylor, J.M. (2001). See
  45. Taylor, I. J., Deelman, E., Gannon, D. B., & Shields, M. (2014). Workflows for e-Science: scientific workflows for grids. Springer Publishing Company, Incorporated.Google Scholar
  46. Thota, A., Luckow, A., & Jha, S. (2011). Efficient large-scale replica-exchange simulations on production infrastructure. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1949), 3318–3335.CrossRefGoogle Scholar
  47. Tolle, K. M., Tansley, D., & Hey, A. J. (2011). The fourth paradigm: data-intensive scientific discovery [point of view]. Proceedings of the IEEE, 99(8), 1334–1337.CrossRefGoogle Scholar
  48. Wang, C., Bi, Z., & Da Xu, L. (2014). IoT and cloud computing in automation of assembly modeling systems. IEEE Transactions on Industrial Informatics, 10(2), 1426–1434.CrossRefGoogle Scholar
  49. Whitmore, A., Agarwal, A., & Da Xu, L. (2015). The internet of things—a survey of topics and trends. Information Systems Frontiers, 17(2), 261–274.CrossRefGoogle Scholar
  50. Xu, L. (2011). Enterprise systems: state-of-the-art and future trends. IEEE Transactions on Industrial Informatics, 7(4), 630–640.CrossRefGoogle Scholar
  51. Xu, L. (2014). Engineering informatics: state of the art and future trends. Frontiers of Engineering Management, 1(3), 277–288.CrossRefGoogle Scholar
  52. Xu L. (2015). Enterprise Integration and Information Architecture: A Systems Perspective on Industrial Information Integration, CRC Press, ISBN 9781439850244.Google Scholar
  53. Yang, X., Blower, J. D., Bastin, L., Lush, V., Zabala, A., Masó, J., & Lumsden, J. (2013). An integrated view of data quality in Earth observation. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1983), 20120072.Google Scholar
  54. Zhuge, H. (2004). China's e-science knowledge grid environment. IEEE Intelligent Systems, 19(1), 13–17.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yunqiang Zhu
    • 1
  • Peng Pan
    • 1
  • Shifeng Fang
    • 1
    • 2
  • Li Da Xu
    • 3
  • Jia Song
    • 1
  • Jinqu Zhang
    • 4
  • Min Feng
    • 5
  1. 1.State Key Laboratory of Resources and Environmental Information Systems, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
  2. 2.Xinjiang Academy of Environmental Protection ScienceUrumqiChina
  3. 3.Department of Information Technology and Decision SciencesOld Dominion UniversityNorfolkUSA
  4. 4.School of Computer ScienceSouth China Normal UniversityGuangzhouChina
  5. 5.Global Land Cover Facility, Department of Geographical SciencesUniversity of MarylandCollege ParkUSA

Personalised recommendations