Information Systems Frontiers

, Volume 17, Issue 4, pp 799–808 | Cite as

Service discovery acceleration with hierarchical clustering

  • Zijie Cong
  • Alberto Fernandez
  • Holger Billhardt
  • Marin Lujak


This paper presents an efficient Web Service Discovery approach based on hierarchical clustering. Conventional web service discovery approaches usually organize the service repository in a list manner, therefore service matchmaking is performed with linear complexity. In this work, services in a repository are clustered using hierarchical clustering algorithms with a distance measure from an attached matchmaker. Service discovery is then performed over the resulting dendrogram (binary tree). In comparison with conventional approaches that mostly perform exhaustive search, we show that service-clustering method brings a dramatic improvement on time complexity with an acceptable loss in precision.


Service discovery Hirerachical clustering Service matchmaking 


  1. Blake, B., Cabral, L., König-Ries, B. (2012). Semantic web services: Advancement through evaluation: Springer.Google Scholar
  2. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S., et al. (2001). Web services description language (wsdl) 1.1.Google Scholar
  3. De Bruijn, J., Lausen, H., Polleres, A., Fensel, D. (2006). The web service modeling language wsml: An overview. In: The Semantic Web: Research and Applications, (pp. 590–604): Springer.Google Scholar
  4. Elgazzar, K., Hassan, A.E., Martin, P. (2010). Clustering wsdl documents to bootstrap the discovery of web services. In: Web Services (ICWS), 2010 IEEE International Conference on, pp. 147–154. IEEE.Google Scholar
  5. Everitt, B.S., Landau, S., Leese, M., Stahl, D. (2001). Hierarchical clustering. Cluster Analysis, 5th Edition.Google Scholar
  6. Fernández, A., Cong, Z., Baltá, A. (2012). Bridging the gap between service description models in service matchmaking. Multiagent and Grid Systems, 8 (1), 83–103.Google Scholar
  7. Fernandez, A., Hayes, C., Loutas, N., Peristeras, V., Polleres, A., Tarabanis, K. (2008). Closing the service discovery gap by collaborative tagging and clustering techniques. In: 7th International Semantic Web Conference, ISWC, (pp. 115–128).Google Scholar
  8. Fung, B.C., Wang, K., Ester, M. (2003). Hierarchical document clustering using frequent itemsets. In: Proceedings of SIAM international conference on data mining.Google Scholar
  9. Hartigan, J.A., & Wong, M.A. (1979). Algorithm as 136: A k-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28 (1), 100–108.Google Scholar
  10. Kiefer, C., & Bernstein, A. (2008). The creation and evaluation of isparql strategies for matchmaking. In: The Semantic Web: Research and Applications, (pp. 463–477): Springer.Google Scholar
  11. Klusch, M., Fries, B., Sycara, K. (2006). Automated semantic web service discovery with owls-mx. In: Proceedings of the fifth international joint conference on Autonomous agents and multiagent systems, pp. 915–922. ACM.Google Scholar
  12. Klusch, M., & Kapahnke, P. (2010). isem: Approximated reasoning for adaptive hybrid selection of semantic services. In: The semantic web: Research and applications, (pp. 30–44): Springer.Google Scholar
  13. Kopecky, J., Vitvar, T., Bournez, C., Farrell, J. (2007). Sawsdl: Semantic annotations for wsdl and xml schema. Internet Computing, IEEE, 11 (6), 60–67.CrossRefGoogle Scholar
  14. Larsen, B., & Aone, C. (1999). Fast and effective text mining using linear-time document clustering. In: Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining pp. 16–22. ACM.Google Scholar
  15. Li, Y., Bandar, Z.A., McLean, D. (2003). An approach for measuring semantic similarity between words using multiple information sources. Knowledge and Data Engineering, IEEE Transactions on, 15(4), 871–882.CrossRefGoogle Scholar
  16. Liu, W., & Wong, W. (2009). Web service clustering using text mining techniques. International Journal of Agent-Oriented Software Engineering, 3(1), 6–26.CrossRefGoogle Scholar
  17. Manning, C.D., Raghavan, P., Schütze, H. (2008). Introduction to information retrieval, vol. 1: Cambridge University Press Cambridge.Google Scholar
  18. Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D., McGuinness, D., Parsia, B., Payne, T., Sabou, M., Solanki, M., et al. (2005). Bringing semantics to web services: The owl-s approach. In: Semantic Web Services and Web Process Composition, (pp. 26–42): Springer.Google Scholar
  19. Miller, G.A. (1995). Wordnet: a lexical database for english. Communications of the ACM, 38(11), 39–41.CrossRefGoogle Scholar
  20. NAICS-Association, et al. (2003). Naics-north american industry classification system.Google Scholar
  21. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K. (2002). Semantic matching of web services capabilities. In: The Semantic WebISWC 2002, (pp. 333–347): Springer.Google Scholar
  22. Pedrinaci, C., Liu, D., Maleshkova, M., Lambert, D., Kopecky, J., Domingue, J. (2010). iserve: a linked services publishing platform. In: CEUR workshop proceedings, vol. 596.Google Scholar
  23. Sheth, A., Verma, K., Miller, J., Rajasekaran, P. (2005). Enhancing web service descriptions using wsdl-s. Research-Industry Technology Exchange at EclipseCon.Google Scholar
  24. Slonim, N., & Tishby, N. (2000). Document clustering using word clusters via the information bottleneck method. In: Proceedings of the 23rd annual international ACM SIGIR conference on Research and development in information retrieval pp. 208–215. ACM.Google Scholar
  25. Steinbach, M., Karypis, G., Kumar, V., et al. (2000). A comparison of document clustering techniques. In: KDD workshop on text mining, vol. 400, (pp. 525–526): Boston.Google Scholar
  26. Sundberg, R. (1974). Maximum likelihood theory for incomplete data from an exponential family. Scandinavian Journal of Statistics, 49–58.Google Scholar
  27. Yue, P. (2013). Automatic service composition. In: Semantic Web-based Intelligent Geospatial Web Services, (pp. 21–25): Springer.Google Scholar
  28. Zhao, Y., Karypis, G., Fayyad, U. (2005). Hierarchical clustering algorithms for document datasets. Data Mining and Knowledge Discovery, 10(2), 141–168.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Zijie Cong
    • 1
  • Alberto Fernandez
    • 1
  • Holger Billhardt
    • 1
  • Marin Lujak
    • 1
  1. 1.Artificial Intelligence Research GroupUniversity Rey Juan CarlosMostoles, MadridSpain

Personalised recommendations