Advertisement

Information Systems Frontiers

, Volume 15, Issue 5, pp 725–745 | Cite as

Towards a reference architecture for fuel-based carbon management systems in the logistics industry

  • M. E. IacobEmail author
  • M. J. van Sinderen
  • M. Steenwijk
  • P. Verkroost
Article

Abstract

The current practice in the logistics industry is to calculate the carbon footprint of transportation activities based on the distance covered, using long-term fuel consumption averages per kilometer. However, fuel consumption may actually vary over time, because of differences in road characteristics, traffic situations, driving behavior, etc. Therefore, distance-based emission calculations are not accurate. Our approach is fuel-based and it calculates transport greenhouse gas emissions by obtaining the actual fuel consumption during trips via board computers installed in vehicles. Thus, we propose an architecture for a fuel-based Logistics Carbon Management System (LCMS) that monitors and collects real-time data about the fuel consumption during trips, and, consequently, calculates detailed and accurate carbon footprints of transportation services. Furthermore, this system is integrated with the logistics service provider’s business processes and with typical software applications (e.g., Transport Management Systems and Board Computers). We validate and implement the proposed architecture by means of a prototype.

Keywords

Carbon footprinting Logistics carbon management system Architecture Logistics industry 

References

  1. Ageron, B., Gunasekaran, A., Spalanzani, A. (2011). Sustainable supply management: an empirical study. International Journal of Production Economics. doi: 10.1016/j.ijpe.2011.04.007, Available online 19 April 2011, In Press, Corrected Proof.
  2. Bass, L., Clements, P., & Kazman, R. (2003). Software architecture in practice (2nd ed.). Reading: Addison-Wesley.Google Scholar
  3. Boer, L., Brouwer, F., & Essen, H. v. (2008). STREAM Studie naar TRansport Emissies van Alle Modaliteiten. Delft: CE.Google Scholar
  4. Boulter, P., & McCrae, I. (2007). ARTEMIS: Assessment and reliability of transport emission models and inventory systems: final report. Wokingham: TRL report.Google Scholar
  5. BSI. (2008). PAS 2050:2008 Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. London: Bristish Standards Institute.Google Scholar
  6. CapGemini (2007). Transportation report 2007, retrieved January 18, 2011, from:http://www.capgemini.com/insights-and-resources/by-publication/transportation-report-2007/.
  7. Chapman, L. (2007). Transport and climate change: a review. Journal of Transport Geography, 15, 354–367.CrossRefGoogle Scholar
  8. Chen, A. J., Boudreau, M., & Watson, R. T. (2008). Information systems and ecological sustainability. Journal of Systems and Information Technology, Sustainability and Information Systems, 10(3), 186–201.CrossRefGoogle Scholar
  9. Chen, A. J., Watson, R. T., Boudreau, M.-C., Karahanna, E. (2009). Organizational adoption of Green IS & IT: An institutional perspective. ICIS 2009 Proceedings (p. Paper 142).Google Scholar
  10. EEA. (2009). EMEP/EEA air pollutant emission inventory guidebook 2009. Copenhagen: European Environment Agency.Google Scholar
  11. European Commission (2008). Climate change: Commission welcomes final adoption of Europe’s climate and energy package. Retrieved May 3, 2010, from Europa Press Releases RAPID: http://europa.eu/rapid/pressReleasesAction.do?reference=IP/08/1998.
  12. Finkbeiner, M. (2009). Carbon footprinting—opportunities and threats. The International Journal of Life Cycle Assessment, 14(2), 91–94.CrossRefGoogle Scholar
  13. Greefhorst, D., Grefen, P., Saamen, E., Bergman, P., Van Beek, W. (2009). Herbruikbare architectuur - een definitie van referentie-architectuur. Informatie, September 2009, 8–14 (in Dutch).Google Scholar
  14. Gregor, S., & Jones, D. (2007). Anatomy of a design theory. JAIS, 8(5), 312–335.Google Scholar
  15. Groom Energy Solutions (2010). Enterprise carbon accounting. Retrieved from http://www.groomenergy.com/eca_report_summary.html.
  16. Hevner, A. R., March, S. T., & Park, J. (2004). Design research in information systems research. MIS Quarterly, 28(1), 75–105.Google Scholar
  17. Holtkamp, B., Steinbuss, S., Gsell, H., Loeffeler, T., Springer, U. (2010). Towards a logistics cloud. In Proceedings of 2010 Sixth International Conference on Semantics, Knowledge and Grids, 1–3 Nov. (pp. 306–308).Google Scholar
  18. Iacob, M. E., Jonkers, H., Lankhorst, M., & Proper, H. (2011). ArchiMate 2.0 specification. Zaltbommel: Van Haren Publishing.Google Scholar
  19. IEA. (2009). CO2 emissions from fuel combustion—2009 edition—highlights. Paris: International Energy Agency.Google Scholar
  20. IPCC. (2007). In Core Writing Team, R. K. Pachauri, & A. Reisinger (Eds.), Climate change 2007: Synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC.Google Scholar
  21. Kuo, B. N., & Dick, G. N. (2010). Organizational Green IT: It seems the bottom line rules. AMCIS 2010 Proceedings (p. Paper 99).Google Scholar
  22. Mann, H., Grant, G., Singh Mann, I. J. (2009). Green IT: An implementation framework. AMCIS 2009 Proceedings, Paper 121. Google Scholar
  23. Matthews, H. H. (2008). The importance of carbon footprint estimation boundaries. Environmental Science and Technology, 16(42), 5839–5842.CrossRefGoogle Scholar
  24. McKinnon, A. (2010). Product-level carbon auditing of supply chains: environmental imperative or wasteful distraction? International Journal of Physical Distribution and Logistics Management, 40(1–2), 42–60.Google Scholar
  25. Mendix (2011). Mendix reference guide 2.5. Retrieved from: https://world.mendix.com/display/NRG.
  26. Molla, A. (2008). GITAM: A model for the adoption of Green IT. ACIS 2008 Proceedings (p. 64).Google Scholar
  27. Naumann, S., Dick, M., Kern, E., & Johann, T. (2011). The GREENSOFT Model: a reference model for green and sustainable software and its engineering. Sustainable Computing: Inforatics and Systems, 1(4), 294–304.CrossRefGoogle Scholar
  28. Ntziachristos, L. G. (2009). COPERT: A European Road Transport Emission Inventory Model. In I. M. Athanasiadis (Ed.), Information technologies in environmental engineering (pp. 491–504). Springer.Google Scholar
  29. Peffers, K., Tuunanen, T., Rothenberger, M., & Chatterjee, S. (2008). A design science research methodology for information systems research. Journal of Management Information Systems, 24(3), 45–77.CrossRefGoogle Scholar
  30. Rich, D. (2008). New Greenhouse gas protocol standards. Retrieved May 31, 2010, from International SmartWay Transportation Summit: http://epa.gov/smartway/transport/documents/international/david-rich-world-resourcces-institute.pdf.
  31. TLN (2008). TLN Infoblad nummer 143. Resultaten TLN Automatiseringsenquête 2008. Transport en Logistiek Nederland (in Dutch).Google Scholar
  32. TOGAF (2009). The open group architecture framework, version 9, enterprise edition. Document number: G091. Retrieved November 29, 2010, from The Open Group: http://www.opengroup.org/architecture/togaf9-doc/arch/.
  33. Verdantix (2009). Green quadrant: Carbon management software (Global). Retrieved from http://www.verdantix.com/index.cfm/papers/Products.Details/product_id/51/green-quadrant-carbon-management-software-global-/-.
  34. W3C (2004). Web services glossary. Retrieved June 22, 2010, from http://www.w3.org/TR/ws-gloss/.
  35. Wackernagel, M., & Rees, W. (1996). Our ecological footprint—reducing human impact on the earth. Gabriola Island: New Society Publishers.Google Scholar
  36. Walls, J., Widmeyer, G., & El Sawy, O. (1992). Building an information system design theory for vigilant EIS. Information Systems Research, 3(1), 36–59.CrossRefGoogle Scholar
  37. Watson, R. T., Boudreau, M.-C., Chen, A., & Huber, M. H. (2008). Green IS: Building sustainable business practices. In R. T. Watson (Ed.), Information systems. Athens: Global Text Project.Google Scholar
  38. Webb, M. (2008). Smart 2020: Enabling the low carbon economy in the information age. http://www.theclimategroup.org.
  39. Weidema, B. T. (2008). Carbon footprint—a catalyst for life cycle assessment? Journal of Industrial Ecology, 12(1), 3–6.CrossRefGoogle Scholar
  40. Wiedmann, T. (2009). Carbon footprint and input–output analysis—an introduction. Economic Systems Research, 21(3), 175–186.CrossRefGoogle Scholar
  41. Wiedmann, T., & Minx, J. (2008). A definition of ‘Carbon Footprint’. In C. C. Pertsova (Ed.), Ecological economics research trends (pp. 1–11). Hauppauge: Nova.Google Scholar
  42. Zadek, H., & Schulz, R. (2010). Methods for the calculation of CO2 emissions in logistics activities. Advanced manufacturing and sustainable logistics. Lecture notes in business information processing, 2010, volume 46, part 3 (pp. 263–268). Springer.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • M. E. Iacob
    • 1
    Email author
  • M. J. van Sinderen
    • 1
  • M. Steenwijk
    • 2
  • P. Verkroost
    • 3
  1. 1.Centre for Telematics and Information TechnologyUniversity of TwenteEnschedeThe Netherlands
  2. 2.University of TwenteEnschedeThe Netherlands
  3. 3.Cape GroepEnschedeThe Netherlands

Personalised recommendations