Skip to main content
Log in

I-Competere: Using applied intelligence in search of competency gaps in software project managers

  • Published:
Information Systems Frontiers Aims and scope Submit manuscript

Abstract

People in software development teams are crucial in order to gain and retain strategic advantage inside a highly competitive market. As a result, human factors have gained attention in the software industry. Software Project Managers are decisive to achieve project success. A competent project manager is capable of solving any problem that an organization may encounter, regardless of its complexity. This paper presents I-Competere which is a tool developed to forecast competence gaps in key management personnel by predicting planning and scheduling competence levels. Based on applied intelligence techniques, I-Competere allows the forecast and anticipation of competence needs thus articulating personnel development tools and techniques. The results of the test, using several artificial neural networks, are more than promising and show prediction accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aggarwal, K., Singh, Y., Chandra, P., & Puri, M. (2005). Bayesian regularization in a neural network model to estimate lines of code using function points. Journal of Computer Science, 1(4), 505–509.

    Article  Google Scholar 

  • Ahmeda, M., Saliub, M., & AlGhamdia, J. (2005). Adaptive fuzzy logic-based framework for software development effort prediction. Information and Software Technology, 47(1), 31–48.

    Article  Google Scholar 

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.

    Article  Google Scholar 

  • Aramo-Immonen, H., Bikfalvi, A., Mancebo, N., Vanharanta, H. (2011). Project managers competence identification. International Journal of Human Capital and Information Technology Professionals (IJHCITP),2(1), 33–47.

    Article  Google Scholar 

  • Arbib, M. (1995). The handbook of brain theory and neural networks. Cambridge: MIT Press.

    Google Scholar 

  • Barr, J., & Saraceno, F. (2002). A computational theory of the firm. Journal of Economic Behavior & Organization, 49(3), 345–361.

    Article  Google Scholar 

  • Bascil, M., & Temurtas, F. (2011). A study on hepatitis disease diagnosis using multilayer neural network with levenberg marquardt training algorithm. Journal of Medical Systems, 35, 433–436. doi:10.1007/s10916-009-9378-2.

    Article  Google Scholar 

  • Bermejo, P., Joho, H., Joemon, M., Villa, R. (2009). Comparison of feature construction methods for video relevance prediction. In Advances in multimedia modeling. Proceedings of 15th international multimedia modeling conference, MMM 2009. Sophia-Antipolis, France, 7–9 January 2009 (pp. 185–196).

  • Bisagni, C., Lanzi, L., Ricci, S. (2002) Optimization of helicopter subfloor components under crashworthiness requirements using neural networks. Journal of Aircraft, 39(2), 296–304.

    Article  Google Scholar 

  • Breiman, L., & Spector, P. (1992). Submodel selection and evaluation in regression. The x-random case. International Statistical Review, 60(3), 291–319.

    Article  Google Scholar 

  • Burger, M., & Neubauer, A. (2003). Analysis of tikhonov regularization for function approximation by neural networks. Neural Networks, 16(1), 79–90.

    Article  Google Scholar 

  • Bygstad, B., & Aanby, H. (2010). Ict infrastructure for innovation: a case study of the enterprise service bus approach. Information Systems Frontiers, 12(3), 257–265.

    Article  Google Scholar 

  • Cauchy, A. (1847). Methodes generales pour la resolution des systemes d’equations simultanees. Compte Rendu des Séances de L’Académie des Sciences, 25(3), 536–538.

    Google Scholar 

  • Cho, S.B., & Shimohara, K. (1998). Evolutionary learning of modular neural networks with genetic programming. Applied Intelligence, 9(3), 191–200.

    Article  Google Scholar 

  • Crawford, L. (2005). Senior management perceptions of project management competence. International Journal of Project Management, 23(1), 7–16.

    Article  Google Scholar 

  • Crowther, P., & Cox, R. (2005). A method for optimal division of data sets for use in neural networks. In Knowledge-based intelligent information and engineering systems. Proceedings of 9th international conference, KES 2005, Melbourne, Australia, 14–16 September 2005, Part IV (pp. 906–912).

  • de Barcelos Tronto, I., da Silva, J., Sant’Anna, N. (2008). An investigation of artificial neural networks based prediction systems in software project management. Journal of Systems and Software, 81(3), 356–367.

    Article  Google Scholar 

  • Dietterich, T. (1998). Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10(7), 1895–1923.

    Article  Google Scholar 

  • Durand, N., Alliot, J.M., Médioni, F. (2000). Neural nets trained by genetic algorithms for collision avoidance. Applied Intelligence, 13(3), 205–213.

    Article  Google Scholar 

  • El Emam, K., & Koru, A. (2008). A replicated survey of it software project failures. IEEE Software, 25(5), 84–90.

    Article  Google Scholar 

  • Fahlman, S. (1988). Faster-learning variations on back-propagation: an empirical study. In Proceedings of Connectionist Models Summer School (pp. 38–51).

  • Feldt, R., Angelis, L., Torkar, R., & Samuelsson, M. (2010). Links between the personalities, views and attitudes of software engineers. Information and Software Technology, 52(6), 611–624.

    Article  Google Scholar 

  • Ferri, C., Hernández-Orallo, J., & Modroiu, R. (2009). An experimental comparison of performance measures for classification. Pattern Recognition Letters, 30(1), 27–38.

    Article  Google Scholar 

  • Galinec, D. (2010). Human capital management process based on information technology models and governance. International Journal of Human Capital and Information Technology Professionals, 1(1), 44–60.

    Article  Google Scholar 

  • García-Crespo, A., González-Carrasco, I., Colomo-Palacios, R., López-Cuadrado, J., & Ruiz-Mezcua, B. (2011). Methodology for software development estimation optimization based on neural networks. IEEE Latin America Transactions, 9(3), 391–405.

    Google Scholar 

  • Garcia-Crespo, A., Ruiz-Mezcua, B., Fernandez, D., & Zaera, R. (2006). Prediction of the response under impact of steel armours using a multilayer perceptron. Neural Computing & Applications, 16(2), 147–154.

    Article  Google Scholar 

  • Garg, A., Goyal, D., & Lather, A. (2010). The influence of the best practices of information system development on software smes: a research scope. International Journal of Business Information Systems, 5(3), 268–290.

    Article  Google Scholar 

  • Geraldi, J., Lee-Kelley, L., & Kutsch, E. (2010). The titanic sunk, so what? Project manager response to unexpected events. International Journal of Project Management, 28(6), 547–558.

    Article  Google Scholar 

  • Gevrey, M., Dimopoulos, I., & Lek, S. (2003). Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecological Modelling, 160(3), 249–264.

    Article  Google Scholar 

  • Gibbs, W. (1994). Software’s chronic crisis. Scientific American, 271(3), 72–81.

    Article  Google Scholar 

  • Girosi, F., Jones, M., & Poggio, T. (1995). Regularization theory and neural networks architectures. Neural Computation, 7(2), 219–269.

    Article  Google Scholar 

  • Glass, R. (2006). The standish report: does it really describe a software crisis? Communications of the ACM, 49(8), 15–16.

    Article  Google Scholar 

  • Gomez, I., & Martin, M.P. (2011). Prototyping an artificial neural network for burned area mapping on a regional scale in mediterranean areas using modis images. International Journal of Applied Earth Observation and Geoinformation, 13(5), 741–752.

    Article  Google Scholar 

  • Gonzalez-Carrasco, I., Garcia-Crespo, A., Ruiz-Mezcua, B., & Lopez-Cuadrado, J. (2012). An optimization methodology for machine learning strategies and regression problems in ballistic impact scenarios. Applied Intelligence, 36(2), 424–441.

    Article  Google Scholar 

  • Grochowski, M., & Dutch, W. (2007). Learning highly non-separable boolean functions using constructive feedforward neural network. In ICANN’07 proceedings of the 17th international conference on artificial neural networks (pp. 180–189).

  • Haykin, S. (1994). Neural networks: A comprehensive foundation. Prentice Hall PTR.

  • He, Y., & Sun, Y. (2001). Neural network-based l1-norm optimisation approach for fault diagnosis of nonlinear circuits with tolerance. IEE Proceedings. Circuits, Devices and Systems, 148(4), 223–228.

    Article  Google Scholar 

  • Henderson, C., Potter, W., McClendon, R., & Hoogenboom, G. (2000). Predicting aflatoxin contamination in peanuts: a genetic algorithm/neural network approach. Applied Intelligence, 12(13), 183–192.

    Article  Google Scholar 

  • Henry, J. (2003). Software project management: A real-world guide to success. Addison Wesley Longman.

  • Hestenes, R., & Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, 49(6), 409–436.

    Article  Google Scholar 

  • Hodgson, D. (2002). Disciplining the professional: the case of project management. Journal of Management Studies, 39(6), 803–821.

    Article  Google Scholar 

  • Huang, M., Tsou, Y., & Lee, S. (2006). Integrating fuzzy data mining and fuzzy artificial neural networks for discovering implicit knowledge. Knowledge-Based Systems, 19(6), 396–403.

    Article  Google Scholar 

  • Jorgensen, M., & Molokken-Ostvold, K. (2006). How large are software cost overruns? A review of the 1994 chaos report. Information and Software Technology, 48(4), 297–301.

    Article  Google Scholar 

  • Kao, Y.T., & Zahara, E. (2008). A hybrid genetic algorithm and particle swarm optimization for multimodal functions. Applied Soft Computing, 8(2), 849–857.

    Article  Google Scholar 

  • Kelemenis, A., Ergazakis, K., & Askounis, D. (2011). Support managers’ selection using an extension of fuzzy topsis. Expert Systems with Applications, 38(3), 2774–2782.

    Article  Google Scholar 

  • Kumar, K.V., Ravi, V., Carr, M., & Raj Kiran, N. (2008). Software development cost estimation using wavelet neural networks. Journal of Systems and Software, 81(11), 1853–1867.

    Article  Google Scholar 

  • Kwak, Y. (2005). A brief history of project management. In The story of managing projects. Greenwood Publishing Group.

  • Lanzi, L., Bisagni, C., & Ricci, S. (2004). Neural network systems to reproduce crash behavior of structural components. Computers & Structures, 82(1), 93–108.

    Article  Google Scholar 

  • Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Quarterly Journal of Applied Mathematics, II(2), 164–168.

    Google Scholar 

  • Li, J., Wu, C., & Wu, H. (2011). Wavelet neural network process control technology in the application of aluminum electolysis. In X. Wan (Ed.), Electrical power systems and computers. Lecture notes in electrical engineering (Vol. 99, pp. 937–941). Berlin: Springer.

    Chapter  Google Scholar 

  • Looney, C. (1993). Advances in feedforward neural networks: demystifying knowledge acquiring black boxes. Transactions on Knowledge and Data Engineering, 8(2), 211–226.

    Article  Google Scholar 

  • Majumder, M., Roy, P., & Mazumdar, A. (2007). Optimization of the water use in the river damodar in west Bengal in India: an integrated multi-reservoir system with the help of artificial neural network. Engineering Computing and Architecture, 1(2), 1–12, article 1192.

    Google Scholar 

  • Marquardt, D. (1963). An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal on Applied Mathematics, 11(2), 431–441.

    Article  Google Scholar 

  • McConnell, S. (2004). Professional software development. Addison-Wesley.

  • Morris, P., Crawford, L., Hodgson, D., Shepherd, M., & Thomas, J. (2006). Exploring the role of formal bodies of knowledge in defining a profession-the case of project management. International Journal of Project Management, 24(8), 710–721.

    Article  Google Scholar 

  • Muller, R., & Turner, J. (2007). Matching the project manager’s leadership style to project type. International Journal of Project Management, 25(1), 21–32.

    Article  Google Scholar 

  • Natarajan, T., Rajah, S., & Manikavasagam, S. (2011). Snapshot of personnel productivity assessment in Indian IT industry. International Journal of Information Technology Project Management, 2(1), 48–61.

    Article  Google Scholar 

  • Nelson, M., & Illingworth, W. (1991). A practical guide to neural nets. Reading: Addison-Wesley.

    Google Scholar 

  • Onita, C., & Dhaliwal, J. (2010). Alignment within the corporate IT unit: an analysis of software testing and development. European Journal of Information Systems, 20(1), 48–68.

    Article  Google Scholar 

  • O’Sullivan, D., & Dooley, L. (2010). Collaborative innovation for the management of information technology resources. International Journal of Human Capital and Information Technology Professionals, 1(1), 16–30.

    Article  Google Scholar 

  • Patnayakuni, R., & Ruppel, C. (2010). A socio-technical approach to improving the systems development process. Information Systems Frontiers, 12(2), 219–234.

    Article  Google Scholar 

  • Peng, X., Zhe, H., Guifang, G., Gang, X., Binggang, C., & Zengliang, L. (2011). Driving and control of torque for direct-wheel-driven electric vehicle with motors in serial. Expert Systems with Applications, 38(1), 80–86.

    Article  Google Scholar 

  • Pereira, J., Cerpa, N., Verner, J., Rivas, M., & Procaccino, J. (2008). What do software practitioners really think about project success: a cross-cultural comparison. Journal of Systems and Software, 81(6), 897–907.

    Article  Google Scholar 

  • Priddy, K., & Keller, P. (2005). Artificial neural networks: An introduction. SPIE Press.

  • Principe, J., Euliano, N., & Lefebvre, W. (1999). Neural and adaptive systems: Fundamentals through simulations with CD-ROM. New York: Wiley.

    Google Scholar 

  • Principe, J., Lefebvre, C., Lynn, G., Fancourt, C., & Wooten, D. (2007). Neuro solutions documentation. NeuroDimension, Inc.

  • Ramon y Cajal, S. (1894). The croonian lecture: La fine structure des centres nerveux. Proceedings of the Royal Society of London, 55, 444–468.

    Article  Google Scholar 

  • Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14(5), 445–471.

    Article  Google Scholar 

  • Roy, N., Potter, W., & Landau, D. (2004). Designing polymer blends using neural networks, genetic algorithms, and markov chains. Applied Intelligence, 20(3), 215–229.

    Article  Google Scholar 

  • Ruano-Mayoral, M., Colomo-Palacios, R., Garcia-Crespo, A., & Gomez-Berbis, J. (2010). Software project managers under the team software process: a study of competences. International Journal of Information Technology Project Management, 1(1), 42–53.

    Article  Google Scholar 

  • Shahhosseini, V., & Sebt, M. (2011). Competency-based selection and assignment of human resources to construction projects. Scientia Iranica, 18(2), 163–180.

    Article  Google Scholar 

  • Sokolova, M., Rasras, R., & Skopin, D. (2006). The artificial neural network based approach for mortality structure analysis. American Journal of Applied Science, 3(2), 1698–1702.

    Article  Google Scholar 

  • Songwu, L., Member, S., & Basar, T. (1998). Robust nonlinear system identification using neural network models. IEEE Transactions on Neural Networks, 9(3), 407–429.

    Article  Google Scholar 

  • Stamelos, I. (2010). Software project management anti-patterns. Journal of Systems and Software, 83(1), 52–59.

    Article  Google Scholar 

  • Stamelos, I. (2010). Software project management anti-patterns. Journal of Systems and Software, 83(1), 52–59.

    Article  Google Scholar 

  • Stavrou, E.T., Charalambous, C., & Spiliotis, S. (2007). Human resource management and performance: a neural network analysis. European Journal of Operational Research, 181(1), 453–467.

    Article  Google Scholar 

  • Su, Y., & Huang, C. (2007). Neural-network-based approaches for software reliability estimation using dynamic weighted combinational models. Journal of Systems and Software, 80(4), 606–615.

    Article  Google Scholar 

  • Swingler, K. (1996). Applying neural networks. A practical guide. Academic Press.

  • Tang, F., Mu, J., & MacLachlan, D.L. (2010). Disseminative capacity, organizational structure and knowledge transfer. Expert Systems with Applications, 37(2), 1586–1593

    Article  Google Scholar 

  • Tarassenko, L. (1998). A guide to neural computing applications. Arnol/NCAF.

  • Watanabe, J., & Maruyama, T. (2010). Software development industrialization by process-centered style. Fujitsu Scientific and Technical Journal, 46(2), 168–176.

    Google Scholar 

  • Wong, T., Wong, S., & Chin, K. (2011). A neural network-based approach of quantifying relative importance among various determinants toward organizational innovation. Expert Systems with Applications, 38(10), 13064–13072.

    Article  Google Scholar 

  • Wythoff, B. (1993). Backpropagation neural networks: a tutorial. Chemometrics and Intelligent Laboratory Systems, 18, 115–155.

    Article  Google Scholar 

  • Xie, C.-L., Chang, J.-Y., Shi, X.-C., & Dai, J.-M. (2010). Fault diagnosis of nuclear power plant based on genetic-rbf neural network. International Journal of Computer Applications in Technology, 39(1/2/3), 159–165.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Colomo-Palacios.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colomo-Palacios, R., González-Carrasco, I., López-Cuadrado, J.L. et al. I-Competere: Using applied intelligence in search of competency gaps in software project managers. Inf Syst Front 16, 607–625 (2014). https://doi.org/10.1007/s10796-012-9369-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10796-012-9369-6

Keywords

Navigation